K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2020

2n + 2 chia hết cho n + 5

=> 2(n+5) - 8 chia hết cho n + 5

=> 8 chia hết cho n + 5

=> n + 5 thuộc Ư(8) = { -8 ; -4 ; -2 ; -1 ; 1 ; 2 ; 4 ; 8 }

n+5-8-4-2-11248
n-13-9-7-6-4-3-13

Vậy n thuộc các giá trị trên

26 tháng 6 2020

tính nhanh :a) 6 và4/5 - (1 và2/3 - 3 và4/5)   b)6 và7/5-(1 và3/4 + 3 và5/9)       

c)7 và9/5-(2 và3/4+3 và5/9)

d) 7 và 5/11 - (2 và 3/7+3 và 5/11)

e) -3/5.5/7+ (-3)/5.3/7+ (-3)/5.6/7

3 tháng 7 2018

Có :\(n-6⋮n-1\)

\(\Rightarrow n-1-5⋮n-1\)

Để n - 6 chia hết cho n-1

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left(1;-1;5;-5\right)\)

\(\Rightarrow n\in\left(2;0;6;-4\right)\)

3 tháng 7 2018

n-6 chia hết cho n-1

=>n-1-5 chia hết cho n-1

Vì n-1 chia hết cho n-1 

=>5 chia hết cho n-1

=>n-1 thuộc Ư(5)={1;-1;5;-5}

=>n thuộc {2;0;6;-4}

17 tháng 12 2018

Ta có :n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n-4 chia hết cho n-2

=> 10-2n-(2n-4) chia hết cho n-2 => 10-2n-2n+4 chia hết cho n-2 => 14 chia hết cho n-2

            Còn lại tự tìm

17 tháng 12 2018

\(10-2n⋮n-2\)

\(\Rightarrow6-2n-4⋮n-2\)

\(\Rightarrow6-2(n-2)⋮n-2\)

\(\Rightarrow6⋮n-2\)

\(\Rightarrow n-2\inƯ(6)=\left\{1;2;3;6\right\}\)

\(\text{Ta có bảng sau :}\)

\(n-2\)\(1\)\(2\)\(3\)\(6\)
\(n\)\(3\)\(4\)\(5\)\(8\)
24 tháng 1 2016

a)2n+1 chia hết cho n-2

=>2n-4+5 chia hết cho n-2

=>5 chia hết cho n-2(vì 2n-4 chia hết cho n-2)

=>n-2\(\in\)Ư(5)={-5;-1;1;5}

=>n\(\in\){-3;1;3;8}

b)2n-5 chia hết cho n+1

=>2n+2-7 chia hết cho n+1

=>7 chia hết cho n+1(vì 2n+2 chia hết cho n+1)

=>n+1\(\in\)Ư(7)={-7;-1;1;7}

=>n\(\in\){-8;-2;0;6}

a) 23 + 1 : 3 - 2

b) nỏ bít

câu b và d bn tham khảo ở link này https://olm.vn/hoi-dap/detail/196836149523.html

câu a và câu c bn tham khảo ở link sau https://olm.vn/hoi-dap/detail/65130381377.html

5 tháng 11 2017

ong số học, bội số chung nhỏ nhất (hay còn gọi tắt là bội chung nhỏ nhất, viết tắt là BCNN, tiếng Anh: least common multiple hoặc lowest common multiple (LCM) hoặc smallest common multiple) của hai số nguyên a và b là số nguyên dương nhỏ nhất chia hết cho cả a và b.[1] Tức là nó có thể chia cho a và b mà không để lại số dư. Nếu a hoặc b là 0, thì không tồn tại số nguyên dương chia hết cho a và b, khi đó quy ước rằng LCM(a, b) là 0.

Định nghĩa trên đôi khi được tổng quát hoá cho hơn hai số nguyên dương: Bội chung nhỏ nhất của a1,..., an là số nguyên dương nhỏ nhất là bội số của a1,..., an.

30 tháng 4 2018

5 + n2 - 2n \(⋮\)n - 2

=> 5 + n . n - 2 . n \(⋮\)n - 2

=> 5 + n . ( n - 2 ) \(⋮\)n - 2

=> 5 \(⋮\)n - 2 vì n . ( n - 2 ) đã chia hết cho n - 2

=> n - 2 \(\in\)Ư ( 5 ) = { 1 ; -1 ; 5 ; -5 }

Với n - 2 = 1 => n = 3

Với n - 2 = -1 => n = 1

Với n - 2 = 5 => n = 7 

Với n - 2 = -5 => n = -3

Vậy : n \(\in\){ 3 ; 1 ; 7 ; -3 }

30 tháng 4 2018

Để  \(5+n^2-2n⋮n-2\)

\(\Leftrightarrow5+n.\left(n-2\right)⋮n-2\)

\(\Leftrightarrow5⋮n-2\)

\(\Leftrightarrow n-2\inƯ\left(5\right)\)

\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)

\(\Leftrightarrow n\in\left\{3;1;7;-3\right\}\)

Chúc bạn học tốt !!!! 

16 tháng 10 2017

a, n+6 \(⋮n+2\)

 \(\Rightarrow n+2+4⋮n+2\)

Mà n+2 \(⋮n+2\)

=> \(4⋮n+2\)

\(\Rightarrow n+2\inư\left(4\right)\in\left\{1,2,4\right\}\)

Ta có bảng:

n+2124
n/02

Vậy n = 0;2
 

16 tháng 10 2017

có câu trả lời mà link đây:https://olm.vn/hoi-dap/question/120543.html