Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có thể đây là bài lớp 4 nhưng mình nghĩ là các bạn lớp 5 cũng sẽ khó khăn đó
#)Giải :
Đặt \(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{5}-\frac{1}{10}\)
\(A=\frac{1}{10}\)
\(B=\frac{2}{8}+\frac{2}{24}+\frac{2}{48}+...+\frac{2}{18\cdot20}\)
\(B=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{18\cdot20}\)
\(B=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{18}-\frac{1}{20}\)
\(B=\frac{1}{2}-\frac{1}{20}\)
\(B=\frac{9}{20}\)
=))
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(A=\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{9}-\frac{1}{9}\right)-\frac{1}{10}\)
\(A=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)
\(A=\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)
Tổng trên có số số hạng là: \(\left(90-32\right)\div1+1=59\)
\(\frac{1}{32}+\frac{1}{33}+\frac{1}{34}+...+\frac{1}{90}\)
\(>\frac{1}{45}+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)
\(=\left(\frac{1}{90}+\frac{1}{90}\right)+\frac{1}{90}+\frac{1}{90}+...+\frac{1}{90}\)
\(=\frac{60}{90}=\frac{2}{3}\)
mình chưa tính nhung mà cách tính:
rút gọn rồi gạch những số giống nhau và tính tổng số đó
nhác tính
\(\frac{1}{7}+\frac{1}{14}+\frac{1}{28}=\frac{1}{4}\)
\(\frac{1}{8}+\frac{1}{12}+\frac{1}{24}=\frac{1}{4}\)
\(\frac{1}{11}+\frac{1}{22}+\frac{1}{33}=\frac{1}{6}\)
\(\frac{1}{9}+\frac{1}{18}=\frac{1}{6}\)
\(\frac{1}{10}+\frac{1}{15}=\frac{1}{6}\)
=>BT=\(\frac{1}{4}.2+\frac{1}{6}.3=1\)