K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

Bài số 3 như này nhé:

3.Trong hộp có 5 viên bi đỏ,6 viên bi xanh và 9 viên bi vàng.Không nhìn vào hộp thì phải lấy ít nhất mấy viên bi để số bi lấy ra chắc chắn có cả 3 màu?      

7 tháng 6 2019

Trả lời :

Bài 1 : Trèo từ lá cờ từ 8 đến 12

Bài 2 : Vì miếng số 5 có 2 miếng vỏ dưa 9 phần 10 miêng 

Bài 3 :Mik ko biết xin lỗi 

 Để x là căn bậc hai số học của số a không âm là x ≥ a và x2 = a.Ví dụ 2 là căn bậc hai số học của 4 vì 2 > 0 và 22 = 4.2 (trang 39 SGK Toán 9 Tập 1): Chứng minh √a2 = |a| với mọi số a.Trả lời:3 (trang 39 SGK Toán 9 Tập 1): Biểu thức A phải thỏa mãn điều kiện gì để √A xác định prôtêinTrả lời:√A xác định khi A > 0 hay nói cách khác : điều kiện xác định của căn bậc hai là biểu...
Đọc tiếp

 

Để x là căn bậc hai số học của số a không âm là x ≥ a và x2 = a.

Ví dụ 2 là căn bậc hai số học của 4 vì 2 > 0 và 22 = 4.

2 (trang 39 SGK Toán 9 Tập 1): Chứng minh √a2 = |a| với mọi số a.

Trả lời:

Để học tốt Toán 9 | Giải bài tập Toán 9

3 (trang 39 SGK Toán 9 Tập 1): Biểu thức A phải thỏa mãn điều kiện gì để √A xác định prôtêin

Trả lời:

√A xác định khi A > 0 hay nói cách khác : điều kiện xác định của căn bậc hai là biểu thức lấy căn không âm.

4 (trang 39 SGK Toán 9 Tập 1): Phát biểu và chứng minh định lí về mối liên hệ giữa phép nhân và phép khai phương. Cho ví dụ.

Trả lời:

Để học tốt Toán 9 | Giải bài tập Toán 9

5 (trang 39 SGK Toán 9 Tập 1): Phát biểu và chứng minh định lí về mối liên hệ giữa phép chia và phép khai phương. Cho ví dụ.

Trả lời:

Để học tốt Toán 9 | Giải bài tập Toán 9

Tham khảo lời giải các bài tập Toán 9 bài ôn tập chương I khác:

  • Câu hỏi ôn tập Chương 1 (trang 39 SGK Toán 9 Tập 1):1. Nêu điều kiện để x là căn bậc hai ... 2. Chứng minh √a2 = |a| ...

  • Bài 70 (trang 40 SGK Toán 9 Tập 1):Tìm giá trị các biểu thức sau bằng cách...

  • Bài 71 (trang 40 SGK Toán 9 Tập 1):Rút gọn các biểu thức sau:...

  • Bài 72 (trang 40 SGK Toán 9 Tập 1):Phân tích thành nhân tử (với các số...

  • Bài 73 (trang 40 SGK Toán 9 Tập 1):Rút gọn rồi tính giá trị các biểu thức sau:...

  • Bài 74 (trang 40 SGK Toán 9 Tập 1):Tìm x, biết:...

  • Bài 75 (trang 40 SGK Toán 9 Tập 1):Chứng minh các đẳng thức sau:...

  • Bài 76 (trang 41 SGK Toán 9 Tập 1):Cho biểu thức...

Mục lục Giải bài tập Toán 9 theo chương:

  • Tập 1
  • Chương I: Căn Bậc Hai. Căn Bậc Ba
  • Chương II: Hàm Số Bậc Nhất
  • Chương I: Hệ Thức Lượng Trong Tam Giác Vuông
  • Chương II: Đường Tròn
  • Tập 2
  • Chương III: Hệ Hai Phương Trình Bậc Nhất Hai Ẩn
  • Chương IV: Hàm Số y = ax2 (a ≠ 0) - Phương Trình Bậc Hai Một Ẩn
  • Chương III: Góc Với Đường Tròn
  • Chương IV: Hình Trụ - Hình Nón - Hình Cầu

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android  hoặc Tải App cho iPhone

 

Loạt bài Giải bài tập Toán lớp 9 | Để học tốt Toán 9 của chúng tôi được biên soạn bám sát theo chương trình Sách giáo khoa Toán 9 (Tập 1 & Tập 2) và một phần dựa trên quyển sách Giải bài tập Toán 9 và Để học tốt Toán lớp 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


 Trang trước

Trang sau  



Các loạt bài lớp 9 khác

  • Soạn Văn 9
  • Soạn Văn 9 (bản ngắn nhất)
  • Văn mẫu lớp 9
  • Đề kiểm tra Ngữ Văn 9 (có đáp án)
  • Giải bài tập Toán 9
  • Giải sách bài tập Toán 9
  • Đề kiểm tra Toán 9
  • Đề thi vào 10 môn Toán
  • Chuyên đề Toán 9
  • Giải bài tập Vật lý 9
  • Giải sách bài tập Vật Lí 9
  • Giải bài tập Hóa học 9
  • Chuyên đề: Lý thuyết - Bài tập Hóa học 9 (có đáp án)
  • Giải bài tập Sinh học 9
  • Giải Vở bài tập Sinh học 9
  • Chuyên đề Sinh học 9
  • Giải bài tập Địa Lí 9
  • Giải bài tập Địa Lí 9 (ngắn nhất)
  • Giải sách bài tập Địa Lí 9
  • Giải Tập bản đồ và bài tập thực hành Địa Lí 9
  • Giải bài tập Tiếng anh 9
  • Giải sách bài tập Tiếng Anh 9
  • Giải bài tập Tiếng anh 9 thí điểm
  • Giải sách bài tập Tiếng Anh 9 mới
  • Giải bài tập Lịch sử 9
  • Giải bài tập Lịch sử 9 (ngắn nhất)
  • Giải tập bản đồ Lịch sử 9
  • Giải Vở bài tập Lịch sử 9
  • Giải bài tập GDCD 9
  • Giải bài tập GDCD 9 (ngắn nhất)
  • Giải sách bài tập GDCD 9
  • Giải bài tập Tin học 9
  • Giải bài tập Công nghệ 9

Trang web chia sẻ nội dung miễn phí dành cho người Việt.

Lớp 3Lớp 4Lớp 5Lớp 6Lớp 7Lớp 8Lớp 9Lớp 10Lớp 11Lớp 12Lập trìnhTiếng Anh

Liên hệ với chúng tôi

Ngõ 18 Tả Thanh Oai, Thanh Trì, Hà Nội

Phone: 01689933602

Email: vietjackteam@gmail.com

Tải nội dung trên Google Play Tải nội dung trên IOS Store

2015 © All Rights Reserved.

Tuyển dụng

Về chúng tôi

  •  
  •  
  • Ôn tập chương I

    Bài 70 (trang 40 SGK Toán 9 Tập 1): Tìm giá trị các biểu thức sau bằng cách biến đổi, rút gọn thích hợp:

    Để học tốt Toán 9 | Giải bài tập Toán 9

    Lời giải:

    Để học tốt Toán 9 | Giải bài tập Toán 9Để học tốt Toán 9 | Giải bài tập Toán 9

    Tham khảo lời giải các bài tập Toán 9 bài ôn tập chương I khác:

  • Câu hỏi ôn tập Chương 1 (trang 39 SGK Toán 9 Tập 1):1. Nêu điều kiện để x là căn bậc hai ... 2. Chứng minh √a2 = |a| ...

  • Bài 70 (trang 40 SGK Toán 9 Tập 1):Tìm giá trị các biểu thức sau bằng cách...

  • Bài 71 (trang 40 SGK Toán 9 Tập 1):Rút gọn các biểu thức sau:...

  • Bài 72 (trang 40 SGK Toán 9 Tập 1):Phân tích thành nhân tử (với các số...

  • Bài 73 (trang 40 SGK Toán 9 Tập 1):Rút gọn rồi tính giá trị các biểu thức sau:...

  • Bài 74 (trang 40 SGK Toán 9 Tập 1):Tìm x, biết:...

  • Bài 75 (trang 40 SGK Toán 9 Tập 1):Chứng minh các đẳng thức sau:...

  • Bài 76 (trang 41 SGK Toán 9 Tập 1):Cho biểu thức...

  • Mục lục Giải bài tập Toán 9 theo chương:

  • Tập 1
  • Chương I: Căn Bậc Hai. Căn Bậc Ba
  • Chương II: Hàm Số Bậc Nhất
  • Chương I: Hệ Thức Lượng Trong Tam Giác Vuông
  • Chương II: Đường Tròn
  • Tập 2
  • Chương III: Hệ Hai Phương Trình Bậc Nhất Hai Ẩn
  • Chương IV: Hàm Số y = ax2 (a ≠ 0) - Phương Trình Bậc Hai Một Ẩn
  • Chương III: Góc Với Đường Tròn
  • Chương IV: Hình Trụ - Hình Nón - Hình Cầu
  • Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

    Tải App cho Android  hoặc Tải App cho iPhone

     

    Loạt bài Giải bài tập Toán lớp 9 | Để học tốt Toán 9 của chúng tôi được biên soạn bám sát theo chương trình Sách giáo khoa Toán 9 (Tập 1 & Tập 2) và một phần dựa trên quyển sách Giải bài tập Toán 9 và Để học tốt Toán lớp 9.

    Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


     Trang trước

    Trang sau  



    Các loạt bài lớp 9 khác

  • Soạn Văn 9
  • Soạn Văn 9 (bản ngắn nhất)
  • Văn mẫu lớp 9
  • Đề kiểm tra Ngữ Văn 9 (có đáp án)
  • Giải bài tập Toán 9
  • Giải sách bài tập Toán 9
  • Đề kiểm tra Toán 9
  • Đề thi vào 10 môn Toán
  • Chuyên đề Toán 9
  • Giải bài tập Vật lý 9
  • Giải sách bài tập Vật Lí 9
  • Giải bài tập Hóa học 9
  • Chuyên đề: Lý thuyết - Bài tập Hóa học 9 (có đáp án)
  • Giải bài tập Sinh học 9
  • Giải Vở bài tập Sinh học 9
  • Chuyên đề Sinh học 9
  • Giải bài tập Địa Lí 9
  • Giải bài tập Địa Lí 9 (ngắn nhất)
  • Giải sách bài tập Địa Lí 9
  • Giải Tập bản đồ và bài tập thực hành Địa Lí 9
  • Giải bài tập Tiếng anh 9
  • Giải sách bài tập Tiếng Anh 9
  • Giải bài tập Tiếng anh 9 thí điểm
  • Giải sách bài tập Tiếng Anh 9 mới
  • Giải bài tập Lịch sử 9
  • Giải bài tập Lịch sử 9 (ngắn nhất)
  • Giải tập bản đồ Lịch sử 9
  • Giải Vở bài tập Lịch sử 9
  • Giải bài tập GDCD 9
  • Giải bài tập GDCD 9 (ngắn nhất)
  • Giải sách bài tập GDCD 9
  • Giải bài tập Tin học 9
  • Giải bài tập Công nghệ 9
  • Trang web chia sẻ nội dung miễn phí dành cho người Việt.

    Lớp 3Lớp 4Lớp 5Lớp 6Lớp 7Lớp 8Lớp 9Lớp 10Lớp 11Lớp 12Lập trìnhTiếng Anh

    Liên hệ với chúng tôi

    Ngõ 18 Tả Thanh Oai, Thanh Trì, Hà Nội

    Phone: 01689933602

    Email: vietjackteam@gmail.com

    Tải nội dung trên Google Play Tải nội dung trên IOS Store

    2015 © All Rights Reserved.

    Tuyển dụng

    Về chúng tôi

  •  
  •  
  • Bài 71 (trang 40 SGK Toán 9 Tập 1): Rút gọn các biểu thức sau:

    Để học tốt Toán 9 | Giải bài tập Toán 9

    Lời giải:

    Để học tốt Toán 9 | Giải bài tập Toán 9

    = (2√2 - 3√2 + 10)√2 - √5

    = 2.(√2)2 - 3.(√2)2 + √10.√2 - √5

    = 4 - 6 + √20 - √5 = -2 + 2√5 - √5

    = -2 + √5

    Để học tốt Toán 9 | Giải bài tập Toán 9

    = 0,2.10.√3 + 2|√3 - √5|

    s

    = 2√3 + 2(√5 - √3)

    = 2√3 + 2√5 - 2√3 = 2√5

    Để học tốt Toán 9 | Giải bài tập Toán 9

    Tham khảo lời giải các bài tập Toán 9 bài ôn tập chương I khác:

  • Câu hỏi ôn tập Chương 1 (trang 39 SGK Toán 9 Tập 1):1. Nêu điều kiện để x là căn bậc hai ... 2. Chứng minh √a2 = |a| ...

  • Bài 70 (trang 40 SGK Toán 9 Tập 1):Tìm giá trị các biểu thức sau bằng cách...

  • Bài 71 (trang 40 SGK Toán 9 Tập 1):Rút gọn các biểu thức sau:...

  • Bài 72 (trang 40 SGK Toán 9 Tập 1):Phân tích thành nhân tử (với các số...

  • Bài 73 (trang 40 SGK Toán 9 Tập 1):Rút gọn rồi tính giá trị các biểu thức sau:...

  • Bài 74 (trang 40 SGK Toán 9 Tập 1):Tìm x, biết:...

  • Bài 75 (trang 40 SGK Toán 9 Tập 1):Chứng minh các đẳng thức sau:...

  • Bài 76 (trang 41 SGK Toán 9 Tập 1):Cho biểu thức...

  • Mục lục Giải bài tập Toán 9 theo chương:

  • Tập 1
  • Chương I: Căn Bậc Hai. Căn Bậc Ba
  • Chương II: Hàm Số Bậc Nhất
  • Chương I: Hệ Thức Lượng Trong Tam Giác Vuông
  • Chương II: Đường Tròn
  • Tập 2
  • Chương III: Hệ Hai Phương Trình Bậc Nhất Hai Ẩn
  • Chương IV: Hàm Số y = ax2 (a ≠ 0) - Phương Trình Bậc Hai Một Ẩn
  • Chương III: Góc Với Đường Tròn
  • Chương IV: Hình Trụ - Hình Nón - Hình Cầu
  • Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

    Tải App cho Android  hoặc Tải App cho iPhone

     

    Loạt bài Giải bài tập Toán lớp 9 | Để học tốt Toán 9 của chúng tôi được biên soạn bám sát theo chương trình Sách giáo khoa Toán 9 (Tập 1 & Tập 2) và một phần dựa trên quyển sách Giải bài tập Toán 9 và Để học tốt Toán lớp 9.

    Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


     Trang trước

    Trang sau  



    Các loạt bài lớp 9 khác

  • Soạn Văn 9
  • Soạn Văn 9 (bản ngắn nhất)
  • Văn mẫu lớp 9
  • Đề kiểm tra Ngữ Văn 9 (có đáp án)
  • Giải bài tập Toán 9
  • Giải sách bài tập Toán 9
  • Đề kiểm tra Toán 9
  • Đề thi vào 10 môn Toán
  • Chuyên đề Toán 9
  • Giải bài tập Vật lý 9
  • Giải sách bài tập Vật Lí 9
  • Giải bài tập Hóa học 9
  • Chuyên đề: Lý thuyết - Bài tập Hóa học 9 (có đáp án)
  • Giải bài tập Sinh học 9
  • Giải Vở bài tập Sinh học 9
  • Chuyên đề Sinh học 9
  • Giải bài tập Địa Lí 9
  • Giải bài tập Địa Lí 9 (ngắn nhất)
  • Giải sách bài tập Địa Lí 9
  • Giải Tập bản đồ và bài tập thực hành Địa Lí 9
  • Giải bài tập Tiếng anh 9
  • Giải sách bài tập Tiếng Anh 9
  • Giải bài tập Tiếng anh 9 thí điểm
  • Giải sách bài tập Tiếng Anh 9 mới
  • Giải bài tập Lịch sử 9
  • Giải bài tập Lịch sử 9 (ngắn nhất)
  • Giải tập bản đồ Lịch sử 9
  • Giải Vở bài tập Lịch sử 9
  • Giải bài tập GDCD 9
  • Giải bài tập GDCD 9 (ngắn nhất)
  • Giải sách bài tập GDCD 9
  • Giải bài tập Tin học 9
  • Giải bài tập Công nghệ 9
  • Trang web chia sẻ nội dung miễn phí dành cho người Việt.

    Lớp 3Lớp 4Lớp 5Lớp 6Lớp 7Lớp 8Lớp 9Lớp 10Lớp 11Lớp 12Lập trìnhTiếng Anh

    Liên hệ với chúng tôi

    Ngõ 18 Tả Thanh Oai, Thanh Trì, Hà Nội

    Phone: 01689933602

    Email: vietjackteam@gmail.com

    Tải nội dung trên Google Play Tải nội dung trên IOS Store

    2015 © All Rights Reserved.

    Tuyển dụng

    Về chúng tôi

  •  
  •  
  •  

ài 72 (trang 40 SGK Toán 9 Tập 1): Phân tích thành nhân tử (với các số x, y, a, b không âm và a ≥ b)

Để học tốt Toán 9 | Giải bài tập Toán 9

Lời giải:

a) xy - y√x + √x - 1

= (√x)2.y - y√x + √x - 1

= y√x(√x - 1) + √x - 1

= (√x - 1)(y√x + 1) với x ≥ 1

Để học tốt Toán 9 | Giải bài tập Toán 9

= √x(√a + √b) - √y(√a + √b)

= (√a + √b)(√x - √y) (với x, y, a và b đều không âm)

Để học tốt Toán 9 | Giải bài tập Toán 9

(với a + b, a - b đều không âm)

d) 12 - √x - x

= 16 - x - 4 - √x (tách 12 = 16 - 4 và đổi vị trí)

= [42 - (√x)2] - (4 + √x)

= (4 - √x)(4 + √x) - (4 + √x)

= (4 + √x)(4 - √x - 1)

= (4 + √x)(3 - √x)

Tham khảo lời giải các bài tập Toán 9 bài ôn tập chương I khác:

  • Câu hỏi ôn tập Chương 1 (trang 39 SGK Toán 9 Tập 1):1. Nêu điều kiện để x là căn bậc hai ... 2. Chứng minh √a2 = |a| ...

  • Bài 70 (trang 40 SGK Toán 9 Tập 1):Tìm giá trị các biểu thức sau bằng cách...

  • Bài 71 (trang 40 SGK Toán 9 Tập 1):Rút gọn các biểu thức sau:...

  • Bài 72 (trang 40 SGK Toán 9 Tập 1):Phân tích thành nhân tử (với các số...

  • Bài 73 (trang 40 SGK Toán 9 Tập 1):Rút gọn rồi tính giá trị các biểu thức sau:...

  • Bài 74 (trang 40 SGK Toán 9 Tập 1):Tìm x, biết:...

  • Bài 75 (trang 40 SGK Toán 9 Tập 1):Chứng minh các đẳng thức sau:...

  • Bài 76 (trang 41 SGK Toán 9 Tập 1):Cho biểu thức...

Mục lục Giải bài tập Toán 9 theo chương:

  • Tập 1
  • Chương I: Căn Bậc Hai. Căn Bậc Ba
  • Chương II: Hàm Số Bậc Nhất
  • Chương I: Hệ Thức Lượng Trong Tam Giác Vuông
  • Chương II: Đường Tròn
  • Tập 2
  • Chương III: Hệ Hai Phương Trình Bậc Nhất Hai Ẩn
  • Chương IV: Hàm Số y = ax2 (a ≠ 0) - Phương Trình Bậc Hai Một Ẩn
  • Chương III: Góc Với Đường Tròn
  • Chương IV: Hình Trụ - Hình Nón - Hình Cầu

Đã có app VietJack trên điện thoại, giải bài tập SGK, soạn văn, văn mẫu.... Tải App để chúng tôi phục vụ tốt hơn.

Tải App cho Android  hoặc Tải App cho iPhone

 

Loạt bài Giải bài tập Toán lớp 9 | Để học tốt Toán 9 của chúng tôi được biên soạn bám sát theo chương trình Sách giáo khoa Toán 9 (Tập 1 & Tập 2) và một phần dựa trên quyển sách Giải bài tập Toán 9 và Để học tốt Toán lớp 9.

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.


 Trang trước

Trang sau  



Các loạt bài lớp 9 khác

  • Soạn Văn 9
  • Soạn Văn 9 (bản ngắn nhất)
  • Văn mẫu lớp 9
  • Đề kiểm tra Ngữ Văn 9 (có đáp án)
  • Giải bài tập Toán 9
  • Giải sách bài tập Toán 9
  • Đề kiểm tra Toán 9
  • Đề thi vào 10 môn Toán
  • Chuyên đề Toán 9
  • Giải bài tập Vật lý 9
  • Giải sách bài tập Vật Lí 9
  • Giải bài tập Hóa học 9
  • Chuyên đề: Lý thuyết - Bài tập Hóa học 9 (có đáp án)
  • Giải bài tập Sinh học 9
  • Giải Vở bài tập Sinh học 9
  • Chuyên đề Sinh học 9
  • Giải bài tập Địa Lí 9
  • Giải bài tập Địa Lí 9 (ngắn nhất)
  • Giải sách bài tập Địa Lí 9
  • Giải Tập bản đồ và bài tập thực hành Địa Lí 9
  • Giải bài tập Tiếng anh 9
  • Giải sách bài tập Tiếng Anh 9
  • Giải bài tập Tiếng anh 9 thí điểm
  • Giải sách bài tập Tiếng Anh 9 mới
  • Giải bài tập Lịch sử 9
  • Giải bài tập Lịch sử 9 (ngắn nhất)
  • Giải tập bản đồ Lịch sử 9
  • Giải Vở bài tập Lịch sử 9
  • Giải bài tập GDCD 9
  • Giải bài tập GDCD 9 (ngắn nhất)
  • Giải sách bài tập GDCD 9
  • Giải bài tập Tin học 9
  • Giải bài tập Công nghệ 9

Trang web chia sẻ nội dung miễn phí dành cho người Việt.

Lớp 3Lớp 4Lớp 5Lớp 6Lớp 7Lớp 8Lớp 9Lớp 10Lớp 11Lớp 12Lập trìnhTiếng Anh

Liên hệ với chúng tôi

Ngõ 18 Tả Thanh Oai, Thanh Trì, Hà Nội

Phone: 01689933602

Email: vietjackteam@gmail.com

Tải nội dung trên Google Play Tải nội dung trên IOS Store

2015 © All Rights Reserved.

Tuyển dụng

Về chúng tôi

  •  
  •  

hihihihhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

0
DD
29 tháng 5 2021

Gọi ban đầu số chỗ ngồi trong phòng được chia thành \(x\)dãy, \(x\inℕ^∗\).

Số ghế trong một dãy là: \(\frac{360}{x}\)(ghế) 

Theo bài ra ta có phương trình: 

\(\left(x-3\right)\left(\frac{360}{x}+4\right)=360\)

\(\Leftrightarrow\left(x-3\right)\left(360+4x\right)=360x\)

\(\Leftrightarrow4x^2-12x-1080=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=18\left(tm\right)\\x=-15\left(l\right)\end{cases}}\)

Đề mình tổng hợp cho các bạn thi hsg toán 9.+) Yêu cầu:Thứ nhất: Các bạn trả lời phải ghi rõ bài của mình làm là bài mấy ý mấy?Ví dụ: Bài 1: Giải:....Thứ hai: Bài được chọn là bài làm đúng nhất và nhanh nhất. Nếu cách khác chậm hơn vẫn được chọn.+) Giải thưởng: Quản lí cam kết tài trợ GP: Số lượng mỗi ý đúng là 1 GP . Tổng số GP tài trợ là > 12Đề bài: Câu 1:a)...
Đọc tiếp

Đề mình tổng hợp cho các bạn thi hsg toán 9.

+) Yêu cầu:

Thứ nhất: Các bạn trả lời phải ghi rõ bài của mình làm là bài mấy ý mấy?

Ví dụ: Bài 1: Giải:....

Thứ hai: Bài được chọn là bài làm đúng nhất và nhanh nhất. Nếu cách khác chậm hơn vẫn được chọn.

+) Giải thưởng: Quản lí cam kết tài trợ GP: Số lượng mỗi ý đúng là 1 GP . Tổng số GP tài trợ là > 12

Đề bài: 

Câu 1:

a) Cho \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\). Tính giá trị của biểu thức: \(A=x^5-4x^4+x^3-x^2-2x+2019\)

b) Cho \(x=\sqrt[3]{2+2\sqrt{3}}+\sqrt[3]{2-2\sqrt{3}}-1\). Tính giá trị biểu thức \(P=x^3\left(x^2+3x+9\right)^3\)

Câu 2:

a) Giải phương trình \(\frac{\left(x-4\right)\sqrt{x-2}-1}{\sqrt{4-x}+x-5}=\frac{2+\left(2x-4\right)\sqrt{x-2}}{x-1}\)

b) Giải hệ phương trình \(\hept{\begin{cases}\sqrt{x+1}+\sqrt{x+2}+\sqrt{x+3}=\sqrt{y-1}+\sqrt{y-2}+\sqrt{y-3}\\x^2+y^2=10\end{cases}}\)

Câu 3:

a) Cho hai đa thức \(f\left(x\right)=\frac{1}{x}+\frac{1}{x-2}+\frac{1}{x-4}+...+\frac{1}{x-2018}\)và \(g\left(x\right)=\frac{1}{x-1}+\frac{1}{x-3}+\frac{1}{x-5}+...+\frac{1}{x-2017}\)

Chứng minh rằng :\(\left|f\left(x\right)-g\left(x\right)\right|>2\)với x là các số nguyên thỏa mãn 0 < x < 2018

b) Cho m, n là hai số nguyên dương lẻ sao cho \(n^2-1\)chia hết cho \(\left|m^2-n^2+1\right|\). Chứng minh rằng \(\left|m^2-n^2+1\right|\)là số chính phương

c) Tìm nghiệm nguyên dương của phương trình \(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)với điều kiện x, y là các số nguyên tố

d) Chứng minh rằng phương trình \(x^{15}+y^{15}+z^{15}=19^{2003}+7^{2003}+9^{2003}\)không có nghiệm nguyên

Câu 4:

a) Cho điểm A cố định thuộc trên đường tròn (O; R). BC là dây cung của đường tròn (O; R), BC di động và tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Tiếp tuyến tại B, C của đường tròn (O) cắt nhau ở G. Gọi S là giao điểm của GD và EF. Chứng minh rằng đường thẳng SH luôn đi qua một điểm cố định.

b) Cho tam giác ABC vuông tại C, D là chân đường cao vẽ từ C. Cho X là điểm bất kì thuộc đoạn thẳng CD (X khác C và D). Cho K là điểm trên đoạn thẳng AX sao cho BK = BC. Tương tự L là điểm trên đoạn thẳng BX sao cho AL = AC. Cho M là giao điểm của AL và BK. Chứng minh rằng MK = ML

Câu 5:

a)  Cho a, b, c là các số thực dương thỏa mãn điều kiện a + b + c = 3. Chứng minh rằng:\(8\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+9\ge10\left(a^2+b^2+c^2\right)\)

b) Cho tập hợp X = {0;1;2;...;14}. Gọi A là một tập hợp gồm 6 phần tử được lấy ra từ X. Chứng minh rằng trong các tập hợp con thực sự của A luôn tìm được hai tập có tổng các phần tử bằng nhau . (Tập hợp con thực sự của tập Y là tập con của Y khác tập rỗng và khác Y)

P/s: Đề bài tổng hợp có gì sai sót mong các bạn góp ý  và bổ sung  không cãi nhau; spam gây mất trật tự. 

12
1 tháng 9 2020

Góp ý của anh là câu hình em chọn những câu mà có các ý nhỏ hơn để gợi ý cho các ý khác em nha =))

sol nhẹ vài bài

\(x\left(x+3\right)+y\left(y+3\right)=z\left(z+3\right)\)

\(\Leftrightarrow x\left(x+3\right)=\left(z-y\right)\left(z+y+3\right)\) 

Khi đó \(z-y⋮x;z+y+3⋮x\)

Nếu \(z-y⋮x\Rightarrow z-y\ge x\Rightarrow z+y+3\ge x+2y+3>x+3\) 

Trường hợp này loại

Khi đó \(z+y+3⋮x\) Đặt \(z+y+3=kx\Rightarrow x\left(x+3\right)=\left(z-y\right)kx\Rightarrow x+3=k\left(z-y\right)\)

Mặt khác \(\left(x+y\right)\left(x+y+3\right)=x\left(x+3\right)+y\left(y+3\right)+2xy>z\left(z+3\right)\)

\(\Rightarrow z< x+y\)

Giả sử rằng \(x\ge y\) Mà \(z\left(z+3\right)>x\left(x+3\right)\Rightarrow z>x>y\) mặt khác \(kx>z>x\Rightarrow k>1\)

Ta có:\(kx< \left(x+y\right)+y+3=x+2y+3\le3x+3< 4x\Rightarrow k< 4\Rightarrow k\in\left\{2;3\right\}\)

Xét \(k=2\Rightarrow z+y+3=2x\Rightarrow z=2x-y-3\) và  \(x\left(x+3\right)=\left(z-y\right)2x\Leftrightarrow x+3=2z-2y\)

\(\Leftrightarrow x+3=4x-2y-6-2y\Leftrightarrow4y=3x-3\Rightarrow y⋮3\Rightarrow y=3\) tự tìm x;z

\(k=3\Rightarrow z+y+3=3x\Rightarrow z=3x-y-3\) và \(x\left(x+3\right)=\left(z-y\right)3x\Leftrightarrow x+3=3z-3y\Leftrightarrow x+3=3\left(3x-y-3\right)-3y\)

\(\Leftrightarrow x+3=9x-3y-9-3y\Leftrightarrow8x-12=6y\Leftrightarrow4x-4=3y\Rightarrow y=2\Rightarrow x=\frac{5}{2}\left(loai\right)\)

Vậy.............

1 tháng 9 2020

Bài 1 : Giải :

a) Ta có : \(x=1+\sqrt[3]{2}+\sqrt[3]{4}\)

\(\Rightarrow x.\left(1-\sqrt[3]{2}\right)=\left(1-\sqrt[3]{2}\right)\left(1+\sqrt[3]{2}.1+\sqrt[3]{2^2}\right)\)

\(\Rightarrow x-x\sqrt[3]{2}=1^3-\left(\sqrt[3]{2}\right)^3=-1\)

\(\Rightarrow x+1=x\sqrt[3]{2}\)

\(\Rightarrow\left(x+1\right)^3=2x^3\)

\(\Rightarrow x^3-3x^2-3x-1=0\)

Khi đó ta có : \(A=x^5-4x^4+x^3-x^2-2x+2019\)

\(=x^5-3x^4-3x^3-x^2-x^4+3x^3+3x^2+x+x^3-3x^2-3x-1+2020\)

\(=x^2.\left(x^3-3x^2-3x-1\right)-x.\left(x^3-3x^2-3x-1\right)+\left(x^3-3x^2-3x-1\right)+2020\)

\(=2020\)

P/s : Tạm thời xí câu này đã tối về xí tiếp nha :))

1."Albert, Bernard vừa kết bạn với Cheryl và họ muốn biết ngày sinh nhật của cô. Cheryl đã đưa cho họ một danh sách với 10 ngày là:             15/5,  16/5,  19/5,             17/6,  18/6,             14/7, 16/7,             14/8,  15/8 và 17/8.Cheryl sau đó đã nói riêng với Albert về tháng và nói riêng với Bernard về ngày sinh của mình.- Albert: Tôi không biết sinh nhật của Cheryl...
Đọc tiếp

1."Albert, Bernard vừa kết bạn với Cheryl và họ muốn biết ngày sinh nhật của cô. Cheryl đã đưa cho họ một danh sách với 10 ngày là:

            15/5,  16/5,  19/5,

            17/6,  18/6,

            14/7, 16/7,  

           14/8,  15/8 và 17/8.

Cheryl sau đó đã nói riêng với Albert về tháng và nói riêng với Bernard về ngày sinh của mình.

- Albert: Tôi không biết sinh nhật của Cheryl là ngày nào nhưng tôi biết Bernard cũng không biết nhiều hơn.

- Bernard: Lúc đầu tôi không biết sinh nhật Cheryl nhưng bây giờ thì tôi đã biết.

- Albert: Sau đó tôi cũng biết sinh nhật Cheryl là ngày nào.

Vậy, Cheryl sinh nhật vào ngày nào?"

2.

Ba cầu thủ của đội bóng đá nữ trường Trung học Euclid nói chuyện với nhau.

Ashley:

- Tớ vừa nhận ra rằng số áo của bọn mình đều là những số nguyên tố có hai chữ số.

 Bethany:

- Tổng hai số áo của các bạn là ngày sinh của tớ, các cậu vừa dự còn gì!

 Caitlin:

- Ừ, vui thật, tổng hai số áo của các cậu lại là ngày sinh của tớ, sắp đến rồi đấy.

 Ashley:

- Giờ tớ mới để ý là hai cậu cùng sinh trong tháng này. Và một điều thú vị nữa là tổng hai số áo của các cậu lại đúng bằng ngày hôm nay!

     Tìm số áo của mỗi bạn. 

3.

“Một sợi dây được quấn đối xứng liên tiếp 4 vòng quanh một ống trụ tròn đều. Ống trụ có chu vi 4 cm và độ dài là 12 cm.

Hỏi: Sợi dây dài bao nhiêu cm? Giải thích cách làm của bạn”.

Không như hai câu hỏi khác trong đề thi, câu hỏi toán này được dành cho học sinh năm cuối. Thế nhưng, nó lại khiến học sinh vô cùng bối rối và rất khó khăn trong việc giải đáp.

"Chỉ có khoảng 10% học sinh trả lời chính xác, 2% học sinh giải được một phần. Học sinh Thụy Điển làm bài tốt nhất với 24% hoàn thành. Trong khi đó, học sinh Mỹ chỉ có 4% làm được bài", báo cáo của (IEA).

8.0pt;color:maroon;background:#EAEAEA'> Caitlin:

 

- Ừ, vui thật, tổng hai số áo của các cậu lại là ngày sinh của tớ, sắp đến rồi đấy.

 Ashley:

- Giờ tớ mới để ý là hai cậu cùng sinh trong tháng này. Và một điều thú vị nữa là tổng hai số áo của các cậu lại đúng bằng ngày hôm nay!

     Tìm số áo của mỗi bạn. 

0
15 tháng 6 2019

chưa học

15 tháng 6 2019

Đề là giải pt hả bạn?

Bài 1 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O) có 2 đường cao BE và CF cắt nhau tại H . Đường thẳng BE và CF cắt (O) lần lượt tại M và N . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IN cắt AB tại P và IM cắt AC tại Q . Chứng minh : 3 điểm P,H,Q thẳng hàngBài 2 : Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) có 2 đường trung tuyến BM và CN cắt nhau tại G .Đường thẳng BM và CN cắt (O)...
Đọc tiếp

Bài 1 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O) có 2 đường cao BE và CF cắt nhau tại H . Đường thẳng BE và CF cắt (O) lần lượt tại M và N . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IN cắt AB tại P và IM cắt AC tại Q . Chứng minh : 3 điểm P,H,Q thẳng hàng

Bài 2 : Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O) có 2 đường trung tuyến BM và CN cắt nhau tại G .Đường thẳng BM và CN cắt (O) lần lươt tại D và E . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IE cắt AB tại P và ID cắt AC tại Q . Chứng minh : 3 điểm P,G,Q thẳng hàng

Bài 3 : Cho tam giác ABC có 3 góc nhọn nội tiếp (O) có 2 đường phân giác BM và CN của tam giác ABC cắt nhau tại  K . Đường thẳng BM và CN cắt (O) tại E và F . Trên cung nhỏ BC lấy 1 điểm I bất kỳ , IF cắt AB tại P và IE cắt AC tại Q .Chứng minh : 3 điểm P,K,Q thẳng hàng

Lưu ý : bài toán số 2 và 3 được khai thác và mở rộng từ bài toán số 1 , một điều thú vị nữa là các bài toán 1,2,3 có nội dung tương đối giống nhau

Nguon : Near Ryuzaki - VMF

Lam ho mik bai 2+3  nha 

1
2 tháng 3 2020

Cả 3 bài này đều sử dụng định lí Pascal

B1: Với các điểm: NAMCIB cùng thuộc đường tròn (O)

NC cắt BM tại H; NI cắt AB  tại P ; MI cắt AC tại Q 

=> P; H ; Q thẳng hàng

B2: Xét các điểm ADCIBE  cùng thuộc đường tròn (O)

B3: Tương tự.

9 tháng 10 2018

goi so doan can cat la x 

ta co Rtd=R/x(do cac R bang nhau)

\(\Rightarrow3=\frac{27}{\frac{x}{x}}\Rightarrow3=\frac{27}{x^2}\Rightarrow x^2=9\Rightarrow x=3\)

vaycan cat 3 doan

Toán lớp 9 cho siêu khó. Ai giải giúp em với sáng mai nộp mà còn kẹt lại 3 bài này @@Bài 1 : Ba đường tròn tâm I, K, H có bán kính bằng nhau và bằng R cùng đi qua một điểm O và từng đôi một cắt nhau tại điểm thứ hai là A, B, C. Chứng minh rằng :a) A, I, H, B là 4 đỉnh của 1 hình bình hànhb) Đường tròn đi qua 3 điểm A, B, C cũng có bán kính RBài 2 : Cho đường tròn tâm O, đường kính AB và một...
Đọc tiếp

Toán lớp 9 cho siêu khó. Ai giải giúp em với sáng mai nộp mà còn kẹt lại 3 bài này @@


Bài 1 : Ba đường tròn tâm I, K, H có bán kính bằng nhau và bằng R cùng đi qua một điểm O và từng đôi một cắt nhau tại điểm thứ hai là A, B, C. Chứng minh rằng :
a) A, I, H, B là 4 đỉnh của 1 hình bình hành
b) Đường tròn đi qua 3 điểm A, B, C cũng có bán kính R

Bài 2 : Cho đường tròn tâm O, đường kính AB và một điểm M di động trên nửa đường tròn. Vẽ đường tròn tâm E tiếp xúc với (O) tại M, tiếp xúc AB tại N. (E) cắt AM, MB tại điểm thứ hai lần lượt là C, D
a) Chứng minh CD // AB
b) Kẻ bán kính OK của (O) vuông góc với AB (K thuộc nửa mặt phẳng bờ AB không chứa M). Chứng minh M, N, K thẳng hàng

Bài 3 : Cho M, N là các giao điểm của hai đường tròn (O)(O'). Đường thẳng OM cắt (O), (O') lần lượt tại điểm thứ hai là A, B. Đường thẳng O'M cắt (O), (O') lần lượt tại điểm thứ hai là C, D. Chứng minh : ba đường thẳng AC, BD, MN đồng quy tại 1 điểm

0