Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(< =>2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(< =>2A-A=1-\frac{1}{2^{99}}< =>A=1-\frac{1}{2^{99}}\)
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(\Rightarrow2A-A=1-\frac{1}{2^{99}}\)
\(\Rightarrow A=1-\frac{1}{2^{99}}\)
khỏi ghi lại đề nha
A=1-1/2+1/2-1/3+1/3-1/4+......+1/49-1/50
A=1-1/50
A=49/50
x/3=1/2
x.2=3.1
x.2=3
x=3:2
x=3/2
vậy x=3/2
x/3=9/2
x.2=3.9
x.2=27
x=27:2
x=27/2
vậy x=27/2
Ta có :
\(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{26.31}\)
\(A=5\left(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{26.31}\right)\)
\(A=5\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(A=5\left(1-\frac{1}{31}\right)\)
\(A=5.\frac{30}{31}\)
\(A=\frac{150}{31}>1\)
\(\Rightarrow\)\(A>1\)
Vậy \(A>1\)
Chúc bạn học tốt ~
Ko cần dài dòng vậy đâu,A=\(\frac{5^2}{1.6}+\left(\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\right)\)
Ta thấy \(\frac{5^2}{1.6}>1\)và tổng trong ngoặc >0 nên =>A>1
k chép đề
3/2.A=\(\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5+...+\left(\frac{3}{2}\right)^{2013}\)
3/2A-A=(\(\frac{3}{4}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+\left(\frac{3}{2}\right)^5+...+\left(\frac{3}{2}\right)^{2013}\)) - (\(\frac{1}{2}+\frac{3}{2}+\left(\frac{3}{2}\right)^2+\left(\frac{3}{2}\right)^3+\left(\frac{3}{2}\right)^4+...+\left(\frac{3}{2}\right)^{2012}\))
1/2 . A =\(\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}\)
A=\(\frac{\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}}{2}\)
B-A=\(\frac{\left(\frac{3}{2}\right)^{2018}}{2}-\)\(\frac{\frac{1}{2}+\left(\frac{3}{2}\right)^{2013}}{2}\)
\(B-A=\frac{\frac{1}{2}}{2}=\frac{1}{2}:2=\frac{1}{4}\)
\(\frac{1}{3.8}+\frac{1}{8.13}+...+\frac{1}{2018.2023}\)
Ta có : \(\frac{1}{3.8}+\frac{1}{8.13}+...+\frac{1}{2018.2023}\)
\(=\frac{1}{5}.\left(\frac{5}{3.8}+\frac{5}{8.13}+...+\frac{5}{2018.2023}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{2018}-\frac{1}{2023}\right)\)
\(=\frac{1}{5}.\left(\frac{1}{3}-\frac{1}{2023}\right)\)
\(=\frac{1}{5}.\frac{2020}{6069}=\frac{404}{6069}\)
Tính :
a) 1/3.8 + 1/8.13 + ... + 1/2018 . 2023
= 1/5 . ( 5/3.8 + 5/8.13 + ... + 5/2018 . 2023 )
= 1/5 . ( 1/3 - 1/8 + 1/8 - 1/13 + ... + 1/2018 - 1/2023 )
= 1/5 . ( 1/3 - 1/2023 )
= 1/5 . ( 2023/6069 - 3/6069 )
= 1/5 . 2020/6069
= 404/6069