Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(x=\frac{a}{m},y=\frac{b}{m}(a,b,m\inℤ,m\ge0)\)
Vì x < y nên ta suy ra a < b
Ta có : \(x=\frac{a}{m},y=\frac{b}{m}\Leftrightarrow x=\frac{2a}{2m},y=\frac{2b}{2m}\)
Mà a < b nên a + a < a + b <=> 2a < a + b
Do 2a < a + b thì x < y [1]
Lại có : a < b nên a + b < b + b <=> a + b < 2b
Mà a + b < 2b <=> x < z [2]
Từ 1 và 2 suy ra x < z < y \((đpcm)\)
a) Áp dụng tính chất dãy tỉ số bằng nhau ta dc:
\(\frac{ab+1}{9}=\frac{ac+2}{15}=\frac{bc+3}{27}=\frac{ab+ac+bc+6}{51}=\frac{17}{51}=\frac{1}{3}\)
=> \(\frac{ab+1}{9}=\frac{1}{3}\)=> ab = 2 (1)
Tương tự nha vậy ta dc: ac = 3 (2) và bc = 6 (3)
Khi đó: (abc)2 = 36 => \(\orbr{\begin{cases}abc=6\\abc=-6\end{cases}}\)
* Với abc = 6
Từ (1), (2), (3) ta có: \(\hept{\begin{cases}c=3\\b=2\\a=1\end{cases}}\)
* Với abc = - 6
Từ (1), (2), (3) ta có: \(\hept{\begin{cases}c=-3\\b=-2\\a=-1\end{cases}}\)
Vậy ...
b) x + 2xy + y = 0
<=> 2x + 4xy + 2y = 0
<=> 2x(1 + 2y) + (1 + 2y) = 1
<=> (2x + 1)(2y + 1) = 1
Tới đây bạn giải theo pt ước số nha
Bài 1: Viết mỗi biểu thức sau về dạng tổng (hiệu) 2 bình phương:
a. x2 - 2xy + 2y2 + 2y +1
= (x2 - 2xy + y2) +( y 2 + 2y +1)
= (x-y)2 + (y+1)2
b. 4x2 - 12x - y2 + 2y + 8
= (4x2 - 12x + 9 ) - (y2 - 2y +1 )
= (2x-3)2 - (y-1)2