K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

\(A=x^2+4=\left(x^2+4x+4\right)-4x=\left(x+2\right)^2-\sqrt{4x}=\left(x+2-\sqrt{4x}\right)\left(x+2+\sqrt{4x}\right)\)

\(B=x^4+4y^4=\left(x^4+4x^2y^2+4y^4\right)-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)

2 tháng 10 2015

a)(x2-x+1)(x2-x+2)-12      (1)

Đặt x2-x+1=a thì (1) <=> a(a+1)-12=a2+a-12

                                                   =(a2-3a)+(4a-12)

                                                   =a(a-3)+4(a-3)

                                                   =(a-3)(a+4)

                                                   =(x2-x+1-3)(x2-x+1+4)

                                                  =(x2-x-2)(x2-x+5)

Vậy......

b) Đặt x2+x=a thì a2 + 4a-12 = (a2-2a)+(6a-12)

                                          = a(a-2) + 6(a-2)

                                          = (a+6)(a-2)

                                          = (x2+x+6)(x2+x-2)

Vậy....

Bài 1

a, x2 + 4x + 3

24 tháng 8 2019

a) \(x^2+4x+3\)

\(=x^2+3x+x+3\)

\(=x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

30 tháng 9 2015

 

a) x3+y3+z3-3xyz

=(x+y)3+z3-3x2y-3xy2-3xyz

=(x+y+z).[(x+y)2+(x+y).z+z2]-3xy.(x+y+z)

=(x+y+z)(x2+2xy+y2+zx+zy+z2)-3xy.(x+y+z)

=(x+y+z)(x2+2xy+y2+zx+zy+z2-3xy)

=(x+y+z)(x2+y2+zx+zy+z2-zy)

 

b)a2(b-c)+b2(c-a)+c2(a-b)

=a2b-a2c+b2c-b2a+c2a-c2b

=(a2b-c2b)+(-a2c+c2a)+(b2c-b2a)

=b.(a2-c2)-ac.(a-c)-b2.(a-c)

=b.(a+c)(a-c)-ac.(a-c)-b2.(a-c)

=(a-c)[b.(a+c)-ac-b2]

=(a-c)(ab+bc-ac-b2)

=(a-c)[(ab-ac)+(bc-b2)]

=(a-c)[a.(b-c)-b.(b-c)]

=(a-c)(b-c)(a-b)

17 tháng 7 2019

x^18 - k mn

17 tháng 7 2019

(x-1)^3(x+1)^2(x^2+1)(x^2+x+1)

a) \(x^2-xy+4x-2y+4\)

\(=\left(x^2+4x+4\right)-\left(xy+2y\right)\\ =\left(x+2\right)^2-y.\left(x+2\right)\)

\(=\left(x+2\right).\left(x+2-y\right)\)

b) \(2x^2-5x-3\)

\(=2x^2+x-6x-3\)

\(=\left(2x^2+x\right)-\left(6x+3\right)=x\left(2x+1\right)-3\left(2x+1\right)\)

\(=\left(2x+1\right).\left(x-3\right)\)

c)\(\)

c);d);e) tạm thời tớ chưa nghĩ ra-.-"

tham khả tạm 2 câu ạ, chúc học tốt'.'

16 tháng 7 2019

\(\left(2a+b\right)^2-\left(2a+a\right)^2\)

\(=\left(2a+b-2a-a\right)\left(2a+b+2a+a\right)\)

\(=\left(b-a\right)\left(5a+b\right)\)

16 tháng 7 2019

\(\left(2a+b\right)^2-\left(2a+a\right)^2\)

\(=\left(2a+b\right)^2-\left(3a\right)^2\)

\(=\left(2a+b-3a\right)\left(2a+b+3a\right)\)

\(=\left(b-a\right)\left(5a+b\right)\)

6 tháng 10 2018

a) \(x^5+x+1=\left(x^5+x+1\right)=x\left(x^4+1+\frac{1}{x}\right)\)

b) và c) Tương tự nha

6 tháng 10 2018

Chả biết đúng hay sai :v tại dùng máy tính tính ra kết quả rồi phân tích ngược lại

a) \(x^5+x+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=x^3\left(x^2+x+1\right)+x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x-1\right)\)

b)\(x^4+2002x^2+2001x+2002=x^4+x^3+1-x^3+x^2+x+2002x^2+2002x+1\)

 \(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)

\(=\left(x^2-x+2002\right)\left(x^2+x+1\right)\)

c)Tương tự câu a),ta phân tích được:

  \(x^{11}+x^7+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)

2 tháng 2 2020

Ta có :

\(x^6+3x^5-2x^4+7x^3-2x^2+3x+1\)

\(=x^6-x^5+x^4+4x^5-4x^4+4x^3+x^4-x^3+x^2+4x^3-4x^2+4x+x^2-x+1\)

\(=x^4\left(x^2-x+1\right)+4x^3\left(x^2-x+1\right)+x^2\left(x^2-x+1\right)+4x\left(x^2-x+1\right)+\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^4+4x^3+x^2+4x+1\right)\)