Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(16^4+y^4=\left[\left(y^2\right)^2+2.y^2.16^2+\left(16^2\right)^2\right]-2.y^2.16^2=\left(y^2+16^2\right)^2-2.y^2.16^2\)
b tự tính tiếp nhé
ý b tương tự. ( gợi ý: thêm bớt hạng tử 16y^4 )
\(y^8+64\)
\(=\left(y^4\right)^2+2\cdot y^4\cdot8+8^2-2\cdot y^4\cdot8\)
\(=\left(y^4+8\right)^2-16y^4\)
\(=\left(y^4+8\right)^2-\left(4y^2\right)^2\)
\(=\left(y^4+8-4y^2\right)\left(y^4+8+4y^2\right)\)
a kudo shinichi làm rồi đó
\(x^4+2010x^2+2009x+2010\)
\(=x^4-x+\left(2010x^2+2010x+2010\right)\)
\(=x\left(x^3-1\right)+2010\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2010\right]=\left(x^2+x+1\right)\left(x^2-x+2010\right)\)
a) \(x^2-xy+4x-2y+4\)
\(=\left(x^2+4x+4\right)-\left(xy+2y\right)\\ =\left(x+2\right)^2-y.\left(x+2\right)\)
\(=\left(x+2\right).\left(x+2-y\right)\)
b) \(2x^2-5x-3\)
\(=2x^2+x-6x-3\)
\(=\left(2x^2+x\right)-\left(6x+3\right)=x\left(2x+1\right)-3\left(2x+1\right)\)
\(=\left(2x+1\right).\left(x-3\right)\)
c)\(\)
c);d);e) tạm thời tớ chưa nghĩ ra-.-"
tham khả tạm 2 câu ạ, chúc học tốt'.'
a) \(x^2+4x+3\)
\(=x^2+3x+x+3\)
\(=x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
2x( x - 1 ) - x( 1 - x )2 - ( 1 - x )3
= 2x( x - 1 ) - x( x - 1 )2 + ( x - 1 )3
= ( x - 1 )[ 2x - x( x - 1 ) + ( x - 1 )2 ]
= ( x - 1 )( 2x - x2 + x + x2 - 2x + 1 )
= ( x - 1 )( x + 1 )
Ta có: \(2x\left(x-1\right)-x\left(1-x\right)^2-\left(1-x\right)^3\)
\(=\left(x-1\right)\left(2x-x^2+x+x^2-2x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\)
Ta có :
\(x^6+3x^5-2x^4+7x^3-2x^2+3x+1\)
\(=x^6-x^5+x^4+4x^5-4x^4+4x^3+x^4-x^3+x^2+4x^3-4x^2+4x+x^2-x+1\)
\(=x^4\left(x^2-x+1\right)+4x^3\left(x^2-x+1\right)+x^2\left(x^2-x+1\right)+4x\left(x^2-x+1\right)+\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^4+4x^3+x^2+4x+1\right)\)
45 + x3 - 5x2 - 9x
= (x3 - 5x2) - (9x - 45)
= x2(x - 5) - 9(x - 5)
= (x - 5)(x2 - 9)
= (x - 5)(x - 3)(x + 3)
TL:
\(45+x^3-5x^2-9x\)
\(=x^2\left(x-5\right)-9\left(x-5\right)\)
\(=\left(x+3\right)\left(x-3\right)\left(x-5\right)\)
a) \(x^5+x+1=\left(x^5+x+1\right)=x\left(x^4+1+\frac{1}{x}\right)\)
b) và c) Tương tự nha
Chả biết đúng hay sai :v tại dùng máy tính tính ra kết quả rồi phân tích ngược lại
a) \(x^5+x+1=x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^3\left(x^2+x+1\right)+x\left(x^2+x+1\right)-\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x-1\right)\)
b)\(x^4+2002x^2+2001x+2002=x^4+x^3+1-x^3+x^2+x+2002x^2+2002x+1\)
\(=x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+2002\left(x^2+x+1\right)\)
\(=\left(x^2-x+2002\right)\left(x^2+x+1\right)\)
c)Tương tự câu a),ta phân tích được:
\(x^{11}+x^7+1=\left(x^2+x+1\right)\left(x^9-x^8+x^6-x^4+x^3-x+1\right)\)
a) \(x^5+x+1\)
\(=\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)
b) \(6x^2-13x+6\)
\(=\left(6x^2-9x\right)-\left(4x-6\right)\)
\(=3x\left(2x-3\right)-2\left(2x-3\right)\)
\(=\left(2x-3\right)\left(3x-2\right)\)
= a^3 (b-c) + b^3 ( c- b + b - a) + c^3 ( a-b)
= a^3 (b-c) - b^3 ( b-c) - b^3(a-b) + c^3(a-b)
= (b-c)(a^3 - b^3) - (a-b)(b^3 - c^3)
=(b-c)(a-b)(a^2+ab+b^2) - (a-b)(b-c)(b^2+bc+c^2)
= (a-b)(b-c)(a^2 + ab + b^2 - b^2 - bc - c^2)
= (a-b)(b-c)( a^2 - c^2 + ab - bc)
=(a-b)(b-c)[(a-c)(a+c) + b(a-c)]
=(a-b)(b-c)(a-c)(a+b+c)
\(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
\(A=x^4+4\)
\(=\) \(x^4+4+4x^2-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(A=\) \(\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)