Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
Bài 1: Chứng minh rằng mọi số nguyên x, y thì:
A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.
Giải: Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x2 + 5xy + 4y2)(x2 + 5xy + 6y2) + y4
Đặt x2 + 5xy + 5y2 = t (t ∈ Z) thì
A = (t - y2)(t + y2) + y4 = t2 - y4 + y4 = t2 = (x2 + 5xy + 5y2)2
Vì x, y, z ∈ Z nên x2 ∈ Z, 5xy ∈ Z, 5y2 ∈ Z => (x2 + 5xy + 5y2) ∈ Z
Vậy A là số chính phương.
Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.
Giải: Gọi 4 số tự nhiên, liên tiếp đó là n, n + 1, n + 2, n + 3 (n ∈ Z). Ta có:
n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1
= (n2 + 3n)(n2 + 3n + 2) + 1 (*)
Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2
= (n2 + 3n + 1)2
Vì n ∈ N nên n2 + 3n + 1 ∈ N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương.
2. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Giả sử: a=m2+n2
b=c2+d2
=> m,n,c,d∈Z
ab=(m2+n2)(c2+d2)
ab=m2(c2+d2)+n2(c2+d2)
ab=(m2c2+m2d2)+(n2c2+n2d2)
ab=(mc)2+(md)2+(nc)2+(nd)2
ab=(mc)2+2mcnd+(nd)2+(nc)2−2ncmd+(md)2
ab=(mc+nd)2+(nc−md)2
Vì m,n,c,d∈Z=>mc+nd∈Z,mc−nd∈Z
Vậy tích ab là tổng hai số chính phương
THAM KHẢO LICK NÀY NHA :
https://h.vn/hoi-dap/question/783892.html
Đặt: a.b = c^2
Em tham khảo vào bài làm ở link: Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath