K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2020

a,

Đặt: \(\hept{\begin{cases}\frac{a^2+b^2-c^2}{2ab}=x\\\frac{b^2+c^2-a^2}{2bc}=y\\\frac{c^2+a^2-b^2}{2ac}=z\end{cases}}\)

a, Ta chứng minh \(x+y+z>1\)hay \(x+y+z-1>0\left(1\right)\)

Ta có BĐT \(\left(1\right)\Leftrightarrow\left(x+1\right)+\left(y-1\right)+\left(z-1\right)>0\left(2\right)\)

Ta có: \(x+1=\frac{a^2+b^2-c^2}{2ab}+1=\frac{\left(a+b\right)^2-c^2}{2ab}=\frac{\left(a+b-c\right)\left(a+b+c\right)}{2ab}\)

Và: \(y-1=\frac{b^2+c^2-a^2}{2bc}-1=\frac{\left(b-c\right)^2-a^2}{2bc}=\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc}\)

Và: \(z-1=\frac{c^2+a^2-b^2}{2ac}-1=\frac{\left(c-a\right)^2-b^2}{2ac}=\frac{\left(c-a-b\right)\left(c-a+b\right)}{2ac}\)

\(\left(2\right)\Leftrightarrow\left(a+b-c\right)\left[\frac{c\left(a+b+c\right)+a\left(b-c-a\right)-b\left(c-a+b\right)}{2abc}\right]>0\)

\(\Leftrightarrow\left(a+b-c\right)\left[c^2-\left(a-b\right)^2\right]>0\left(abc>0\right)\)

\(\Leftrightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)>0\)

BĐT cuối đúng vì \(a,b,c\)thỏa mãn \(BĐT\Delta\left(đpcm\right)\)

b, Để \(A=1\Leftrightarrow\left(z+1\right)+\left(y-1\right)+\left(z-1\right)=0\)

\(\Leftrightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)=0\)

Từ trên ta suy ra được 3 trường hợp:

  • Trường hợp 1: \(a+b-c=0\Rightarrow\hept{\begin{cases}x+1=0\\y-1=0\\z-1=0\end{cases}}\hept{\Rightarrow\begin{cases}x=-1\\y=-1\\z=1\end{cases}}\)
  • Trường hợp 2:\(a-b+c=0\Rightarrow\hept{\begin{cases}x-1=\frac{\left(a-b-c\right)\left(a-b+c\right)}{2ab}=0\\y-1=0\\z+1=\frac{\left(c+a-b\right)\left(c+a+b\right)}{2ca}\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=1\\z=-1\end{cases}}\)
  • Trường hợp 3: \(-a+b+c=0\Rightarrow\hept{\begin{cases}x-1=0\\y+1=\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}\\z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-1\\z=1\end{cases}}}\)

Từ các trường trên ta thấy trường hợp nào cũng có 2 trong 3 phân thức \(x,y,z=1\)và còn lại \(=-1\)

Cuộc thi vào nhưng ngày sắp đi học của các bạn hãy tận hưởng !Cuộc thi môn Tiếng Anh, toán vòng 2,... vào ngày 31/8!!Đơn đăng kí :trả lời gồm 5 bài toán (  2 bài lớp 7, 2 bài lớp 8, đặc biệt); tiếng anh gồm 2 bài đơn giản  (Ai không trả lời thì nên đánh dấu câu hỏi này nhé) (Nếu không trả lời hay đánh dấu thì rất khó biết lịch thi và kết quả)TOÁN:Lớp 7: ( 15 sp cho 3 người trả...
Đọc tiếp

Cuộc thi vào nhưng ngày sắp đi học của các bạn hãy tận hưởng !

Cuộc thi môn Tiếng Anh, toán vòng 2,... vào ngày 31/8!!

Đơn đăng kí :trả lời gồm 5 bài toán (  2 bài lớp 7, 2 bài lớp 8, đặc biệt); tiếng anh gồm 2 bài đơn giản  (Ai không trả lời thì nên đánh dấu câu hỏi này nhé) (Nếu không trả lời hay đánh dấu thì rất khó biết lịch thi và kết quả)

TOÁN:

Lớp 7: ( 15 sp cho 3 người trả lời đầu; 2sp cho hình vẽ )

Hình học:cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nữa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng \(EF=\frac{1}{2}CD\)

Số học: Chứng minh rằng trong các số tự nhiên thế nào cũng có số k sao cho \(1983^k-1\)chia hết cho \(10^5\)

Lớp 8: ( bài toán số 20sp; toán hình 15sp cho 3 người đầu tiên )

Câu 1: Cho tam giác ABC. Trong các hình chữ nhật có 2 đỉnh nằm trên cạnh BC và 2 đỉnh còn lại lần lượt nằm trên 2 cạnh AB và AC, hãy tìm hình chữ nhật có diện tích lớn nhất

Câu 2:Chứng minh các bất phương trình sau tương đương 

a) \(2x^2+3x+1>0\)\(\frac{2}{3}x^2+x+\frac{1}{3}>0\)

b)\(4x-1< 0\)và \(1-4x>0\)

c)\(\frac{3x-2}{4}+2\frac{1}{2}>0\)và \(3x+8>0\)

2 Câu đặc biệt  :3 

Cho a, b, c là các số thực dương tùy ý. chứng minh rằng 

\(\frac{a\left(b+c\right)}{\left(b+c\right)^2+a^2}+\frac{b\left(a+c\right)}{\left(c+a\right)^2+b^2}+\frac{c\left(a+b\right)}{\left(a+b\right)^2+c^2}\le\frac{6}{5}\)

Giai phương trình \(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)

Thời gian công bố kết quả 7:30 ngày 1/9

(bạn nào trên 1000 điểm hỏi đáp có thể tham gia tài trợ sp , các bạn tài trợ cũng có thể tham gia) 

NỘI QUY : KHÔNG COP BÀI, KHÔNG CHÉP MẠNG ( khuyến cáo làm bài thi nên ghi câu mấy để dễ chấm )

mong cô chi  tick gp cho các bạn được thưởng 

20
31 tháng 8 2020

Câu đặc biệt :

\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)

\(\Leftrightarrow9x^4+36x^3+29x^2-14x-16=-16\)

\(\Leftrightarrow9x^4+36x^3+29x^2-14x=0\)

\(\Leftrightarrow x\left(9x^3+36x^2+29x-14\right)=0\)

\(\Leftrightarrow x\left[\left(9x^3+18x^2-7x\right)+\left(18x^2+36x-14\right)\right]=0\)

\(\Leftrightarrow x\left[x\left(9x^2+18x-7\right)+2\left(9x^2+18x-7\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(9x^2+18x-7\right)=0\)

\(\Leftrightarrow x\left(x+2\right)\left[\left(9x^2+21x\right)-\left(3x+7\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left[3x\left(3x+7\right)-\left(3x+7\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)

<=> x = 0 hoặc x + 2 = 0 hoặc 3x - 1 = 0 hoặc 3x + 7 = 0

<=> x = 0 hoặc x = - 2 hoặc x = 1/3 hoặc x = 7/3

Vậy phương trình có tập nghiệm là : \(S=\left\{0;\frac{1}{3};\frac{7}{3};-2\right\}\)

31 tháng 8 2020

Câu 2:

a) Ta có: \(2x^2+3x+1>0\)

\(\Leftrightarrow\frac{2x^2+3x+1}{3}>\frac{0}{3}\)

\(\Leftrightarrow\frac{2}{3}x^2+x+\frac{1}{3}>0\)

=> đpcm

b) Ta có: \(4x-1< 0\)

\(\Leftrightarrow0-\left(4x-1\right)>0\)

\(\Leftrightarrow1-4x>0\)

=> đpcm

c) Ta có: \(\frac{3x-2}{4}+2\frac{1}{2}>0\)

\(\Leftrightarrow\frac{3x-2}{4}+\frac{10}{4}>0\)

\(\Leftrightarrow\frac{3x+8}{4}>0\)

\(\Rightarrow3x+8>0\)

=> đpcm

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

1.

a. $A=\frac{x^3-x+2}{x-2}=\frac{x^2(x-2)+2x(x-2)+4(x-2)+10}{x-2}$

$=x^2+2x+4+\frac{10}{x-2}$

Với $x$ nguyên, để $A$ nguyên thì $\frac{10}{x-2}$ là số nguyên. 

Khi $x$ nguyên, điều này xảy ra khi $10\vdots x-2$

$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 5; \pm 10\right\}$

$\Rightarrow x\in \left\{3; 1; 4; 0; 7; -3; 12; -8\right\}$

b.

\(B=\frac{2x^2+5x+8}{2x+1}=\frac{x(2x+1)+3x+8}{2x+1}=x+\frac{3x+8}{2x+1}\)

Với $x$ nguyên, để $B$ nguyên thì $3x+8\vdots 2x+1$

$\Rightarrow 2(3x+8)\vdots 2x+1$
$\Rightarrow 3(2x+1)+13\vdots 2x+1$

$\Rightarrow 13\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 13\right\}$

$\Rightarrow x\in \left\{0; -1; 6; -7\right\}$

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

Bài 2:

$P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1$
Với $x$ nguyên thì $2x-1$ cũng là số nguyên.

$\Rightarrow P$ nguyên với mọi $x$ nguyên.

7 tháng 1 2020

để M xác định 

\(\Rightarrow\orbr{\begin{cases}y-1\ne0\\y+1\ne0\end{cases}}\Rightarrow\frac{y\ne1}{y\ne-1}.\)

\(b,M=\frac{1}{y-1}+\frac{y}{y+1}+\frac{2y^2}{y^2-1}\)

\(M=\frac{y+1}{\left(y+1\right)\left(y-1\right)}+\frac{y\left(y-1\right)}{\left(y-1\right)\left(y+1\right)}+\frac{2y^2}{\left(y+1\right)\left(y-1\right)}\)

\(M=\frac{y+1-y^2+y+2y^2}{\left(y+1\right)\left(y-1\right)}=\frac{1+2y+y^2}{\left(y+1\right)\left(y-1\right)}=\frac{\left(1+y\right)^2}{\left(y+1\right)\left(y-1\right)}\)

\(M=\frac{y+1}{y-1}\)

c, Để M nhận giá trị nguyên 

\(\Rightarrow y+1⋮y-1\)

\(\Leftrightarrow y-1+2⋮y-1\)

\(\Rightarrow y-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

y = .... Tự tính 

24 tháng 5 2020

\(P=\frac{1}{a^2+a+1}\) ( với a khác 1 ) 

=> \(\frac{1}{P}=a^2+a+1=a^2+2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)

\(=\left(a+\frac{1}{2}\right)^2+\frac{3.}{4}\ge\frac{3}{4}\) vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)

Dấu "=" xảy ra <=> \(\left(a+\frac{1}{2}\right)^2=0\Leftrightarrow a=-\frac{1}{2}\)( thỏa mãn )

Vậy GTNN của \(\frac{1}{P}=\frac{3}{4}\)đạt tại  a = - 1/2.

bạn kiếm kiểu gì cx ko có ai giải đâu, đề này sai r, nãy mình sửa mới đúng

12 tháng 3 2020

Đề thiếu x nguyên nhé bạn :)

\(x^2+10x+10=\left(x^2+10x+25\right)-15\)

Đặt \(x^2+10x+10=a^2\left(a\in Z\right)\)

Khi đó:\(\left(x+5\right)^2-a^2=15\)

\(\Leftrightarrow\left(x+5-a\right)\left(x+5+a\right)=15\)

Đến đây bạn lập ước ra ngay nhé ! Có điều hơi mệt tí,hihi !

sai rồi bạn. phải là \(a^2-\left(x+5\right)^2\)chứ

21 tháng 7 2019

Đặt: \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(2A=\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab}\)

\(3-2A=1-\frac{2bc}{a^2+2bc}+1-\frac{2ac}{b^2+2ac}+1-\frac{2ab}{c^2+2ab}\)

\(3-2A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

\(\Rightarrow2A+1\le3\Rightarrow A\le1\left(đpcm\right)\)

\("="\Leftrightarrow a=b=c\)

Đặt \(A=\frac{bc}{a^2+2bc}+\frac{ac}{b^2+2ac}+\frac{ab}{c^2+2ab}\)

\(2A=\frac{2bc}{a^2+2bc}+\frac{2ac}{b^2+2ac}+\frac{2ab}{c^2+2ab}\)

\(3-2A=1-\frac{2bc}{a^2+2bc}+1-\frac{2ac}{b^2+2ac}+1-\frac{2ab}{c^2+2ab}\)

\(3-2A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

\(\Rightarrow2A+1\le3\Rightarrow A\le1\left(đpcm\right)\)

Dấu = xảy ra \(\Rightarrow2A+1\le3\Rightarrow A\le1\left(đpcm\right)\)