K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 9 2018

Bài 1 : 

\(C=2x^2-7x-13\)

\(2C=4x^2-14x-26\)

\(2C=\left(4x^2-14x+\frac{49}{4}\right)-\frac{55}{4}\)

\(2C=\left(2x-\frac{7}{2}\right)^2-\frac{55}{4}\ge\frac{-55}{4}\)

\(C=\frac{\left(2x-\frac{7}{2}\right)^2-\frac{55}{4}}{2}\ge\frac{-55}{4}:2=\frac{-55}{8}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-\frac{7}{2}\right)^2=0\)

\(\Leftrightarrow\)\(x=\frac{7}{4}\)

Vậy GTNN của \(C\) là \(\frac{-55}{8}\) khi \(x=\frac{7}{4}\)

Chúc bạn học tốt ~ 

20 tháng 9 2018

gtnn mà bạn

17 tháng 9 2018

A = x-4x - 9 

A = ( x - 2 ) -13 

Vì ( x - 2 ) 2 >= 0

=> A >= -13

Dấu "=" xảy ra khi x -2 =0

          <=> x =2

 Vậy A min = -13 khi x =2

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

1.

a. $A=\frac{x^3-x+2}{x-2}=\frac{x^2(x-2)+2x(x-2)+4(x-2)+10}{x-2}$

$=x^2+2x+4+\frac{10}{x-2}$

Với $x$ nguyên, để $A$ nguyên thì $\frac{10}{x-2}$ là số nguyên. 

Khi $x$ nguyên, điều này xảy ra khi $10\vdots x-2$

$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 5; \pm 10\right\}$

$\Rightarrow x\in \left\{3; 1; 4; 0; 7; -3; 12; -8\right\}$

b.

\(B=\frac{2x^2+5x+8}{2x+1}=\frac{x(2x+1)+3x+8}{2x+1}=x+\frac{3x+8}{2x+1}\)

Với $x$ nguyên, để $B$ nguyên thì $3x+8\vdots 2x+1$

$\Rightarrow 2(3x+8)\vdots 2x+1$
$\Rightarrow 3(2x+1)+13\vdots 2x+1$

$\Rightarrow 13\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 13\right\}$

$\Rightarrow x\in \left\{0; -1; 6; -7\right\}$

AH
Akai Haruma
Giáo viên
14 tháng 7 2024

Bài 2:

$P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1$
Với $x$ nguyên thì $2x-1$ cũng là số nguyên.

$\Rightarrow P$ nguyên với mọi $x$ nguyên.

mệt rời o 

thông cảm 

hihi

Bài 7 

\(a,A=x^2-2x+5\)

\(=\left(x^2-2x+1\right)+4\)

\(=\left(x-1\right)^2+4\ge4\forall x\)

GTNN \(A=4\) khi \(\left(x-1\right)^2=0\Rightarrow x=1\)

\(b,B=x^2-x+1\)

\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(c,C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

Đặt \(x^2+5x=t\)

\(\Rightarrow C=\left(t-6\right)\left(t+6\right)\)

\(=t^2-36\)

\(\left(x^2+5x\right)^2-36\ge36\forall x\)

\(d,D=x^2+5y^2-2xy+4y-3\)

\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)-4\)

\(=\left(x-y\right)^2+\left(2y+1\right)^2-4\ge-4\)

Bài 6

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(=\left(a^2+2ab+b^2\right)-4ab\)

\(=\left(a+b\right)^2-4ab\)

Bài 5 :

\(a,16x^2-\left(4x-5\right)^2=15\)

\(16x^2-16x^2+40x-25-15=0\)

\(40x-40=0\)

\(40x=40\)

\(x=1\)

\(b,\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)

\(4x^2+12x+9-4x^2+4=49\)

\(12x=36\)

\(x=3\)

\(c,\left(2x+1\right)\left(2x-1\right)+\left(1-2x\right)^2=18\)

\(4x^2-1+1-4x+4x^2=18\)

\(8x^2-4x-18=0\)

\(2\left(4x^2-2x-9\right)=0\)

\(x=\frac{1-\sqrt{37}}{4}\)

\(d,2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)

\(2x^2+4x+2-x^2+9-x^2+8x-16=0\)

\(12x=4\)

\(x=\frac{1}{3}\)

Bài 1:

a)    \(x^3-5x^2+8x-4\)

\(=x^3-4x^2+4x-x^2+4x-4\)  \(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)\(=\left(x-1\right)\left(x-2\right)^2\)

b) Ta có:  \(\frac{A}{M}=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)

   Với \(x\in Z\)thì  \(A⋮M\)khi \(\frac{7}{2x-3}\in Z\)\(\Rightarrow7⋮\left(2x-3\right)\)\(\Rightarrow2x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow=\left\{1;5;\pm2\right\}\)thì khi đó \(A⋮M\)

17 tháng 8 2019

Các bài làm này có đúng ko ạ, ai đó duyệt giúp em, em cảm ơn.

Bài 1:

a)x3-5x2+8x-4=x3-4x2+4x-x2+4x-4

=x(x2-4x-4)-(x2-4x+4)

=(x-1) (x-2)2

b)Xét:

\(\frac{a}{b}-\frac{10x^2-7x-5}{2x-3}\)

=\(5x+4+\frac{7}{2x-3}\)

Với x thuộc Z thì A /\ B khi \(\frac{7}{2x-3}\) thuộc  Z => 7 /\ (2x-3)

Mà Ư(7)={-1;1;-7;7} => x=5;-2;2;1 thì A /\ B

c)Biến đổi \(\frac{x}{y^3-1}-\frac{x}{x^3-1}=\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}\)

=\(\frac{\left(x^4-y^4\right)\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}\)(do x+y=1=>y-1=-x và x-1=-y)

=\(\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left[x^2y^2+y^2x+y^2+xy^2+xy+y+x^2+x+1\right]}\)

=\(\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{xy\left[x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+2\right]}\)

=\(\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left[x^2y^2+\left(x+y\right)^2+2\right]}=\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+3\right)}\)

=\(\frac{\left(x-y\right)\left[x\left(-y\right)+y\left(-x\right)\right]}{xy\left(x^2y^2+3\right)}=\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}\)

=\(\frac{-2\left(x-y\right)}{x^2y^2+3}\)Suy ra điều phải chứng minh

Bài 2 )

a)(x2+x)2+4(x2+x)=12 đặt y=x2+x

   y2+4y-12=0 <=>y2+6y-2y-12=0

<=>(y+6)(y-2)=0 <=> y=-6;y=2

>x2+x=-6 vô nghiệm vì x2+x+6 > 0 với mọi x

>x2+x=2 <=> x2+x-2=0 <=> x2+2x-x-2=0

<=>x(x+2)-(x+2)=0 <=>(x+2)(x-1) <=>  x=-2;x-1

Vậy nghiệm của phương trình x=-2;x=1

b)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+\frac{x+4}{2005}+\frac{x+5}{2004}\)\(+\frac{x+6}{2003}\)

=\(\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)+\left(\frac{x+4}{2005}+1\right)\)\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)

<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}\)\(+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)

<=>\(\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}\)\(-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)

Nhờ OLM xét giùm em vs ạ !

làm nhiều rồi 

hehe

hihi

30 tháng 8 2019

3/

a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)

\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)

\(A=x^2-2xy+y^2+x^2+2xy+y^2\)

\(A=2x^2+2y^2\)

b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)

\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)

\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)

\(B=8ab\)

c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)

\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)

\(C=x^2+2xy+y^2-x^2+2xy-y^2\)

\(C=4xy\)

d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)

\(D=4x^2-4x+1-8x^2+24x-18+4\)

\(D=-4x^2+20x-13\)

1 tháng 9 2019

a,A=(5x-2)^2+3>0 

b,B=(3X-Y)^2+Y^2+1>0

CÂU SAU TƯƠNG TỰ NHA BẠN

2 tháng 9 2019

\(A=25x^2-20x+7\)

\(A=\left(25x^2-20x+4\right)+3\)

\(A=\left(5x-2\right)^2+3>0\)

Học tốt

21 tháng 7 2019

\(\text{a)}x^3-6x^2+12x-8\)

\(=x^3-2x^2-4x^2+8x+4x-8\)

\(=\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(4x-8\right)\)

\(=x^2\left(x-2\right)+4x\left(x-2\right)+4\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+4x+4\right)\)

\(=\left(x-2\right)\left(x+2\right)^2\)

21 tháng 7 2019

\(\text{b)}8x^2+12x^2y+6xy^2+y^3=\left(2x+y\right)^3\)

Bài 2:

\(\text{a) }x^7+1=\left(x^{\frac{7}{3}}\right)^3+1^3=\left(x^{\frac{7}{3}}+1\right)\left[\left(x^{\frac{7}{3}}\right)^2-x^{\frac{7}{3}}+1\right]=\left(x^{\frac{7}{3}}+1\right)\left(x^{\frac{14}{3}}-x^{\frac{7}{3}}+1\right)\)

\(\text{b) }x^{10}-1=\left(x^5\right)^2-1^2=\left(x^5-1\right)\left(x^5+1\right)\)

Bài 3:

\(\text{a) }69^2-31^2=\left(69-31\right)\left(69+31\right)=38.100=3800\)

\(\text{b) }1023^2-23^2=\left(1023-23\right)\left(1023+23\right)=1000.1046=1046000\)