K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2.Tim x

a,(2x+1)2-4(x+2)2=9

<=> (4x2+4x+1)-4(x2+4x+4)=9

<=> -12x-15=9

<=> -12x=24

<=> x=-2

19 tháng 6 2019

\(1a,\)\(\left(x^2-0,1\right)=\left(x-\sqrt{0,1}\right)\left(x+\sqrt{0,1}\right)\)

\(1b,\)\(\left(2a^2+b^2\right)^2=\left(2a^2\right)^2+2.2a^2.b^2+\left(b^2\right)^2=4a^4+4a^2b^2+b^4\)

\(1c,\)\(\left(a^2+5\right)\left(5-a^2\right)=\left(5+a^2\right)\left(5-a^2\right)=25-x^4\)

7 tháng 9 2017
ở trong sách nào đó bạn

Bài 1

a, x2 + 4x + 3

24 tháng 8 2019

a) \(x^2+4x+3\)

\(=x^2+3x+x+3\)

\(=x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

17 tháng 6 2018

Bài 1: mình ko bik yêu cầu đề bài nên mình ko làm.

Bài 2: 

a/ \(\left(2x+5\right)^2=\left(2x\right)^2+2.2x.5+5^2\)

\(=4x^2+20x+25\)

b/ \(\left(3x+4\right)^2=\left(3x\right)^2+2.3x.4+4^2\)

\(=9x^2+24x+16\)

c/\(\left(3x+5y+\frac{1}{2}\right)^2\)

Đối với bình phương của một tổng gồm ba hạng tử, ta có công thức như sau:

(a+b+c)2=a2+b2+c2+2ab+2ac+2bc=a2+b2+c2+2(ab+bc+ac)

\(\left(3x+5y+\frac{1}{2}\right)^2=9x^2+25y^2+\frac{1}{4}+2\left(15x+\frac{3x}{2}+\frac{5y}{2}\right)\)

Bài 3:

a/ A= x2+10x+30

A= x2+2.5x+25+5

A= x2+2.5.x+52+5

A=(x+5)2+5

Ta có (x+5)2 luôn luôn > hoặc = 0

=>(x+5)2+5 luôn luôn lớn hơn 0 (vì 5>0)

=> A luôn dương.

b/ \(B=3x^2+6x+19\\ B=\left(\sqrt{3x}\right)^2+2x.\sqrt{3}.\sqrt{3}+3+16\)

\(B=\left(\sqrt{3x}+\sqrt{3}\right)^2+16\)

(Tương tự như câu A)

Ta có \(\left(\sqrt{3x}+\sqrt{3}\right)^2\)luôn luôn > hoặc = 0

=> \(\left(\sqrt{3x}+\sqrt{3}\right)^2+16\) luôn luôn > 0 (vì 16 > 0)

=> B luôn dương.

c/ \(C=4x^2+10x+32\\ C=\left(2x\right)^2+2.2x.\frac{5}{2}+\frac{25}{4}+\frac{103}{4}\\C=\left(2x+\frac{5}{2}\right)^2+\frac{103}{4} \)

(Chứng minh tương tự câu a, b)

Chúc bạn học tốt!!

17 tháng 6 2018

mk giúp bạn bài  3 còn bài 1, 2 tự làm nha

a , A = x2  + 10x +30 

= (x2 + 2 . 5 . x +52 ) +5

= (x+5)2 + 5

Vì (x+5)2  >= 0 (luôn đúng)

=> (x+5)2 + 5  luôn luôn dương

6 tháng 1 2019

ai nhanh tui se k

6 tháng 1 2019

b) Ta có: 

\(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\)

Suy ra đpcm.

22 tháng 7 2019

a)\(=>x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)

\(=>3x^2+26x=0\)

\(=>x\left(3x+26\right)=0\)

Đến đây tự tìm nha

Câu b thế câu a vào xong khử bớt đi là ra

21 tháng 10 2018

a. Biểu thức ko thể biểu diễn dưới dạng tích của các thừa số

b. (x-1)(4x+1)

c. -(3z^2-5y^2-6xy-3x^2)

d. x(y^2-2xy+x-9)

e. -(y-x)(y-x+2)

f. y^3+xy^2+3x^2y-y+x^2-x

HỌC TỐT.

22 tháng 10 2018

\(4x^2-3x-1\)

\(=4x^2-4x+x-1\)

\(=4x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(4x+1\right)\)

14 tháng 2 2020

a) \(\left(2x+3\right)^2-3\left(x-4\right)\left(x+4\right)=\left(x-2\right)^2+1\)

\(\Leftrightarrow4x^2+12x+9-3\left(x^2-16\right)=x^2-4x+4+1\)

\(\Leftrightarrow4x^2+12x+9-3x^2+48=x^2-4x+5\)

\(\Leftrightarrow x^2+12x+57=x^2-4x+5\)

\(\Leftrightarrow16x+52=0\)

\(\Leftrightarrow x=-\frac{13}{4}\)

b) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow\)Xem lại đề !

c) \(x\left(x-1\right)-\left(x-3\right)\left(x+4\right)=5x\)

\(\Leftrightarrow x^2-x-x^2-x+12=5x\)

\(\Leftrightarrow-2x+12=5x\)

\(\Leftrightarrow7x-12=0\)

\(\Leftrightarrow x=\frac{12}{7}\)

d) \(\left(2x+1\right)\left(2x-1\right)=4x\left(x-7\right)-3x\)

\(\Leftrightarrow4x^2-1=4x^2-28x-3x\)

\(\Leftrightarrow28x+3x-1=0\)

\(\Leftrightarrow31x-1=0\)

\(\Leftrightarrow x=\frac{1}{31}\)

14 tháng 2 2020

a) (2x + 3)2 - 3 (x - 4) (x + 4)= (x - 2)2 + 1

<=> 4x^2 + 12x + 9 - 3(x^2 - 16) = x^2 - 4x + 4 + 1 

<=> 4x^2 + 12x + 9 - 3x^2 + 48 = x^2 - 4x + 5

<=> x^2 + 12x + 57 = x^2 - 4x + 5

<=> x^2 - x^2 + 12x + 4x + 57 - 5 = 0

<=> 16x + 52 = 0

<=> 16x = -52

<=> x = -13/4