# Mỗi ngày vài bài toán
1
Cho tam giác ABC nhọn nội tiếp đường tròn (O). AB, BE, CF là các đường cao. Đường thẳng EF cắt BC tại G, Đường thẳng AG cắt đường tròn tại M
a) Chứng minh 4 điểm A, M, E, F cùng thuộc một đường tròn
b) Gọi N là trung điểm cạnh BC và H là trực tâm tam giác ABC. Chứng minh GH vuông góc với AN
Hình vẽ:93829438_2897886100328981_3967148101747081216_n.png (1332×644)
2
Giải phương trình nghiệm nguyên \(x^3-10x+1=y^3+6y^2\)
3
Cho a,b,c là độ dài 3 cạnh tam giác,chứng minh rằng \(\frac{3\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}+\frac{ab+bc+ca}{a^2+b^2+c^2}\le2\)
2.)\(x^3-10x+1=y^3+6y^2\)(1)
Đặt\(x=y+b\)với \(b\inℤ\).Ta có:
(1)\(\Leftrightarrow\)\(y^3+3y^2b+3yb^2+b^3+10y+10b-1=y^2+6y^2\)
\(\Leftrightarrow\)\(y^2\left(3b-6\right)+y\left(3b^2+10\right)+b^3+10b-1=0\)(1)
\(\Delta=\left(3b^2+10\right)^2-\left(12b-24\right)\left(b^3+10b-1\right)\ge0\)
\(=-3b^4+24b^3-60b^2+252b+76\)
\(=1399-3\left(b^2-4b\right)^2-3\left(2b-21\right)^2\ge0\)
Do đó:\(\left(b^2-4b^2\right)+\left(2b-21\right)^2\le466\)
Nhận thấy:\(\left(2b-21\right)^2\le466\)nên \(0\le b\le21\)
Theo phương trình ban đầu thì\(x,y\)khác tính chắn lẻ nên\(b\)lẻ:
Nếu\(b=1\)thì(1)\(\Leftrightarrow\)\(-3y^2+12y+10\Leftrightarrow y=5\Rightarrow x=6\)
Nếu\(b=3\)thì(1)\(\Leftrightarrow3y^2+37y+56=0,\)không có nghiệm nguyên
\(\Leftrightarrow\)Nếu\(b=5\)thì(1)\(\Leftrightarrow9y^2+85y+174=0\Leftrightarrow y=-3\Rightarrow x==2\)
\(\Leftrightarrow\)Nếu\(b=7\)thì(1)\(\Leftrightarrow\)\(15y^2+157y+412=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=11\)thì(1)\(\Leftrightarrow27y^2+373y+1440=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=13\)thì(1)\(\Leftrightarrow33y^2+517y+2326=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=15\)thì(1)\(\Leftrightarrow39y^2+685+3524=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=17\)thì(1)\(\Leftrightarrow45y^2+877y+5082=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=19\)thì(1)\(\Leftrightarrow51y^2+1093y+7048=0\)(Vô nghiệm)
\(\Leftrightarrow\)Nếu\(b=21\)thì(1)\(\Leftrightarrow57y^2+442y+9479=0\)(Vô Nghiệm)
Vậy phương trình có nghiệm nguyên\(\left(a,b\right)=\left(6,5\right),\left(2,-3\right)\)
P/s:Do bài trên toiii gửi nhầm nên đây là phần tiếp theo của bafi2,Sr:<
_Hoc Tốt_