Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) +Xét tg ABH và tg ACH có
AB=AC ( tg ABC cân tại A)
góc B= góc C (tg ABC cân tại A)
góc AHB= góc AHC=900 (AH là đường cao )
Suy ra: tg ABH= tg ACH
b)+ tg ABH=tg ACH (câu a) => góc BAH= góc CAH (2 góc tương ứng) (1)
+ Ta có: DH // AC (GT)
=> góc CAH= góc DHA ( 2 góc so le trong ) (2)
+ Từ (1) và (2) => góc BAH= góc DHA hay góc DAH= góc DHA
Suy ra: tg HDA cân tại D => AD=AH
c) +HD// AC => góc DHB= góc ACH ( 2 góc đồng vị ) hay góc DHB= góc ACB
Mà góc ABC= góc ACB (tg ABC cân tại A)
Suy ra: góc DHB= góc ACB => tg DBH cân tại D
=> DB=DH. Mặt khác: AD = DH (câu b)
Suy ra: DB=DA => CD là đường trung tuyến của tg ABC (3)
+ tg ABH= tg ACH (câu a )=> HB=HC (2 cạnh tương ứng ) => AH là đường trung tuyến của tg ABC (4)
+Từ (3) và (4) => G là trọng tâm của tg ABC (CD cắt AH tại G)
Mà BE là đường trung tuyến của tg ABC=> BE đi qua G
Suy ra: B, E, G thẳng hàng
d) mk bt lm nhưng lại k bt cách trình bày thông cảm nha ^^
câu d tương đương với
CM cvi tam giác ABC > AH+3x 2/3 BE = AH+BE+CD
Tương đương với bài toán chưngs minh độ dài 3 đường trung tuyến của 1 tam giác nhỏ hơn chu vi của tam giác đó
bài toán đấy b có thể tham khảo quyển nâng cao pt tập 2
Đề thiếu ở ý b) với c) '-'
a) Tam giác ABC đều
=> AB = AC = BC
=> ^A = ^B = ^C = 600
Xét tam giác vuông AHB và tam giác vuông AHC có :
AB = AC ( cmt )
AH chung
=> Tam giác vuông AHB = tam giác vuông AHC ( ch - cgv )
a, xét 2 tam giác vuông AEC và AED có:
AC=AD(gt)
AE cạnh chung
=> t.giác AEC=t.giác AED(cạnh huyền-cạnh góc vuông)
=> \(\widehat{CAE}\)=\(\widehat{DAE}\)=> AE là p/g của \(\widehat{CAD}\)<=> AE là p/g của \(\widehat{CAB}\)
b, xét t.giác AIC và t.giác AID có:
AI cạnh chung
\(\widehat{IAC}\)=\(\widehat{IAD}\)(theo câu a)
AC=AD(gt)
=> t.giác AIC=t.giác AID(c.g.c)
=> IC=ID=> I là trung điểm của CD(1)
\(\widehat{AIC}\)=\(\widehat{AID}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AIC}\)=\(\widehat{AID}\)=90 độ=> AI\(\perp\)CD(2)
từ (1) và (2) suy ra AE là trung trực của CD
A B C D E I
a: Xét ΔAHB vuông tại và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Xét ΔABC có
H là trug điểm của BC
HD//AC
Do đó: D là trung điểm của AB
Ta có ΔAHB vuông tại H
mà HD là đường trung tuyến
nên HD=AD
c: Xét ΔABC có
CD là đường trung tuyến
AH là đường trung tuyến
CD cắt AH tại G
Do đó: G là trọng tâm
=>B,G,E thẳng hàng
a) Xét Δ AHB vàΔ AHC có:
AH chung
AB =AC (vì Δ ABC cân taijA theo gt)
AH ⊥ BC (vì AH là đường cao theo gt)
⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)
Ta lại có: HD // AC (gt )
⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân)
c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến Δ ABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )
mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB
⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)
mà ta có AD=DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến Δ ABC tại C (4)
Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng
d) Mk sẽ nghĩ câu d sau nhé!!!
Mình làm thế này đúng không ạa) Xét Δ AHB vàΔ AHC có:
AH chung
AB =AC (vì Δ ABC cân tại A theo gt)
AH ⊥ BC (vì AH là đường cao theo gt)
⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)
Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)
Ta lại có: HD // AC (gt )
⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)
Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)
Từ (*) (**) ⇒AD=DH=BD
c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến Δ ABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )
mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB
⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)
mà ta có AD=DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến Δ ABC tại C (4)
Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng
a) Xét Δ AHB vàΔ AHC có:
AH chung
AB =AC (vì Δ ABC cân tại A theo gt)
AH ⊥ BC (vì AH là đường cao theo gt)
⇒ Δ vuông AHB= Δ vuông AHC ( cạnh huyền- cạnh góc vuông)
Sửa đề ( đề sai : HD // AC )
b) Ta có : Δ AHB = Δ AHC (câu a)
⇒ ∠BAH = ∠CAH ( 2 góc tương ứng) (1)
Ta lại có: HD // AC (gt )
⇒ ∠DHA = ∠HAC (so le trong) (2)
Từ (1), (2)⇒ ∠BAH =∠ DAH ⇔ AD = DH ( theo tính chất Δ cân) (*)
Có HD // AC ⇒ ∠ACB = ∠DHB ( đồng vị ) (3)
△ABC cân tại A ⇒ ∠ABC = ∠ACB ( tính chất tam giác cân ) (4)
Từ (3) và (4) ⇒ ∠ABC = ∠DHB ⇒ ΔBDH cân tại D
⇒BD = HD (**)
Từ (*) (**) ⇒AD=DH=BD
c) Ta có: Δ ABH = Δ ACH (câu a) ⇔ BH =HC (hai cạnh tương ứng)
⇒ AH là trung tuyến Δ ABC tại A ( 3)
Ta có : DH //AC ⇒ ∠DHB =∠ACB ( vì đồng vị )
mà ΔABC cân tại A(gt) ⇒ ∠ABC= ∠ACB
⇒ ∠DHB =∠DBH ⇒ DB =DH (theo tính chất Δ cân)
mà ta có AD=DH (câu b) ⇒ DA=DB
⇒ CD là trung tuyến Δ ABC tại C (4)
Từ (3), (4) , AC cắt CD tại G ⇒ G là trọng tâm Δ ABC
mà CE =EA ⇒ BE là trung tuyến Δ ABC tại B
⇒ BE qua G ⇒ B,G,E thẳng hàng