K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2016

1. f(-2) = 3.(-2)2-1 = 3.4-1 = 11

f(1/4) = 3.(1/4)2-1=-13/16

2. f(x) = 47

=> 3x2 - 1 = 47

=> 3x2 = 48

=> x2 = 16

=> x = 4 hoặc x = -4

3. f(x) = f(-x)

<=> 3x2 - 1 = 3.(-x)2 - 1

Mà x2 = (-x)2

=> 3x - 1 = 3.(-x)2 - 1

=> f(x) = f(-x) (đpcm)

Phạm Hiền Trang Đừng nói gì hết 

16 tháng 12 2018

Cho x=2018\(\Rightarrow2f\left(2018\right)+f\left(\frac{1}{2018}\right)=2018\)                         (1)

Cho x=\(\frac{1}{2018}\)\(\Rightarrow2f\left(\frac{1}{2018}\right)+f\left(\frac{1}{\frac{1}{2018}}\right)=\frac{1}{2018}\Rightarrow2f\left(\frac{1}{2018}\right)+f\left(2018\right)=\frac{1}{2018}\)         (2)

Lấy (1) x 2 - (2)\(\Rightarrow4f\left(2018\right)+2f\left(\frac{1}{2018}\right)-2f\left(\frac{1}{2018}\right)-f\left(2018\right)=2018-\frac{1}{2018}\)

\(\Rightarrow3f\left(2018\right)=\frac{4072323}{2018}\Rightarrow f\left(2018\right)=\frac{4072323}{6054}\)

20 tháng 12 2018

Đù Nguyễn Hưng Phát giỏi hơn cả cô mình

16 tháng 2 2019

a) \(y=f\left(x\right)=3\left(x^2+\frac{2}{3}\right)\)

\(f\left(-x\right)=3\left[\left(-x\right)^2+\frac{2}{3}\right]=f\left(x\right)^{\left(đpcm\right)}\)

b) Đề sai,thay x = 3 vào là thấy.

16 tháng 2 2019

b (đè sai

13 tháng 8 2015

b) Thay x = 0 

\(0.f\left(1\right)=2f\left(0\right)\Rightarrow f\left(0\right)=0\)

Thay x = -2\(-2f\left(-1\right)=0.f\left(-2\right)\Rightarrow f\left(-1\right)=0\)

Vậy phương trình trên có ít nhất 2 nghiệm

5 tháng 2 2020

a)

- Vì \(\sqrt{x+3}\) lớn hơn hoặc = 0 với mọi x lớn hơn hoặc = -3

=> A lớn hơn hoặc = 2.

Dấu = xra khi và chỉ khi \(\sqrt{x+3}\)= 0

                                             => x + 3 = 0

                                                         x = -3

Vậy..........

b)

Ta có: B lớn hơn hoặc = / x - 1 /  + / x - 3 / = / x - 1 /  + / 3 - x /

Mà / x - 1 /  + / 3 - x / lớn hơn hoặc = / x - 1 + 3 - x /  = /2/ = 2

=> B lớn hơn hoặc = 2.

Dấu = xra khi và chỉ khi : (x-1)(3-x) lớn hơn hoặc = 0 và / x - 2 / = 0.   (1)

Giải (1) được x = 2 TM.

Vậy min B = 2 <=> x=2.