K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các số hạng trong dãy này có dạng là \(\dfrac{n\left(n+1\right)}{2}\)

Tổng của hai số hạng liên tiếp trong dãy là:

\(\dfrac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}=\dfrac{n^2+n+n^2+3n+2}{2}=\dfrac{2n^2+4n+2}{2}\)

\(=n^2+2n+1\)

\(=\left(n+1\right)^2\) là số một số chính phương(đpcm)

9 tháng 7 2018

Số hạng thứ n của dãy là:n(n+1)/2

Số hạng thứ n-1 của dãy là:(n-1)n/2

Ta có:(n-1)n/2+n(n+1)/2=(n^2-n)/2+(n^2+n)/2

                                  =(2n^2)/2=n^2

Vì n thuộc N nên n^2 là số chính phương

Vậy tổng 2 số hạng liên tiếp của dãy là số chính phương.

9 tháng 7 2018

Ta xét tổng hai số 

(n-1)×n/2  +  n×(n+1)/2

=> (n-1)×n+n×(n+1) /2

=>n×[(n-1)×(n+1)]  /2

=>n×2n /2

=> 2×n2  /2

=> n2

bài toán được chứng minh

23 tháng 7 2016

Nhận xét các số hạng trong dãy có dạng

\(\frac{n\left(n+1\right)}{2}\)

=>Tổng 2 số hạng liên tiếp của dãy là

\(\frac{n\left(n+1\right)+\left(n+1\right)\left(n+2\right)}{2}=\frac{\left(n+1\right)\left(2n+2\right)}{2}=\frac{\left(n+1\right)2\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\) là số chính phương

=>đpcm

24 tháng 6 2017

Ta biểu thị 2 số hạng liên tiếp của dãy có dạng:\(\dfrac{\left(n-1\right).n}{2}\) và \(\dfrac{n.\left(n+1\right)}{2}\)

=> \(\dfrac{\left(n-1\right).n}{2}\)+ \(\dfrac{n.\left(n+1\right)}{2}\)=\(\dfrac{n^2-n+n^2+n}{2}=\dfrac{2n^2}{2}=n^2\)

Vậy tổng của hai số hạng liên tiếp bao giờ cũng là số chính phương

NV
10 tháng 7 2021

Hai số hạng liên tiếp của dãy có dạng:

\(\dfrac{\left(n-1\right)n}{2}\) và \(\dfrac{n\left(n+1\right)}{2}\) với \(n\ge2\)

Tổng của 2 số hạng liên tiếp:

\(\dfrac{\left(n-1\right)n}{2}+\dfrac{n\left(n+1\right)}{2}=\dfrac{n}{2}\left(n-1+n+1\right)=n^2\) là 1 SCP (đpcm)

25 tháng 6 2016

Số hạng thứ n là \(\frac{n\left(n+1\right)}{2}\)

Tổng 2 số liên tiếp của dãy là \(\frac{n\left(n+1\right)}{2}+\frac{\left(n+1\right)\left(n+2\right)}{2}\)

\(=\frac{\left(n+1\right)\left(2n+2\right)}{2}\)

\(=\frac{\left(n+1\right)\left(n+1\right).2}{2}\)

\(=\left(n+1\right)^2\)

Do đó tổng 2 số liên tiếp của dãy là số chính phương.

5 tháng 10 2017

Xét tổng 2 số hạng liên tiếp của dãy:

(n-1)n/2+n(n+1)/2=(n^2-n+n^2+n)/2=(2n^2)/2=n^2 là số chính phương(n thuộc N)

6 tháng 10 2017

bạn thử chọn số khác đi như \(\frac{n\left(n+2\right)}{2}\)nó đâu có ra

5 tháng 10 2017

chỉ với

23 tháng 6 2017

a

011015... xy...
b123 (&)456...99100  
c13 (*)6 (^)101521...xy  

nhận xét: 

+ tổng 2 ô liên tiếp ở hàng c bằng bình phương ô phía trên ô thứ hai trong 2 ô  (ở hàng b)

      VD: (*) + (^) = (&)

   nói vậy hiểu ko??

=> x+ y = 100 ^2 =10 000   (1)

+ Sự liên quan giữa các hàng (đây cũng là căn cứ khi tớ đưa ra cái bảng ở trên, mấy ô bỏ trống là mấy thứ ko cần quan tâm):

a+b=c  <=>  a-c=b  (+)

áp dụng (+) vào cột có a=x, b=100, c=y ta được: (viết vầy có xác định được là cột nào ko???)

x-y = 100   (2) 

Cộng 2 vế  (1) và (2), ta có: 

2x=10 100 <=> x= 5050 hay số hạng thứ 100 là 5050 

Câu b thì tớ ko biết

là số thứ 100 là 1000