Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Câu c và d chia hết cho 6
2.a chia hết cho 2
b chia hết cho 5
c chia hết cho 2 và 5
d chia hết cho 2
3.a *=0;2;4;6;8
b *=0;5
c *=0
4.aaa=a.111=a.3.37 chia hết cho 37
abcabc=abc.1001=abc.91.11 chia hết cho 11
aaaaaa=a.111111=a.15873.7 chia hết cho 7
câu 5 mình ko biết nha bạn
abcdeg = 1000.abc + deg
abcdeg = 999.abc + abc + def
abcdeg = 37.27.abc + abc + deg (*)
Từ (*) ta có:
abc + deg chia hết cho 37
vế phải chia hết cho 37 => vế trái chia hết 37
Kết luận abcdeg chia hết cho 37
ba,*15 có số cuối là 5
=>*15 luôn chia hết cho 5(1)
*15 có chữ số cuối là 5
=>*15 không chia hết cho 2(2)
Từ (1) (2)
=> Không có * thích hợp
a, ko có số nào thỏa mãn vì tận cùng là 5
b, để * 37 chia hết cho 3
thì ( * + 3 + 7 ) chia hết cho 3
hay ( * + 10 ) chia hết cho 3
\(\Rightarrow\)* = { 2 ; 5; 8 }
vậy ta có các số 237; 537 ; 837 chia hết ch 3
c, để 5*94 chia hết cho 3 và 9
thì ( 5 + * + 9 + 4 ) chia hết cho 3 ,9
hay ( 18 + * ) chia hết cho 3 ,9
\(\Rightarrow\) * = { 0 ; 9 }
vậy ta có các số 5094; 5994 chia hết cho 3 ,9
d, để *3747* chia hết cho 2,5thì tận cùng bằng 0
để *37470 chia hết cho 3, 9
thì ( * + 3 +7 + 4 + 7 + 0 )chia hết cho 3 ,9
hay ( * + 21 ) chia hết cho 3, 9
\(\Rightarrow\) * = { 6 }
vậy ta có số 637470 chia hết cho cả 2 ,3 ,5 ,9
e, để 1*5 chia hết cho 2 ko có trường hợp nào thỏa mãn
để 1* 5 chia hết cho 5 thì * = { 0; 1 ;.....; 9 }
vậy * = { 0;1;..;9}
\(a.\)\(135\); \(175\); \(315\); \(375\); \(715\); \(735.\)
b. 135 ; 153 ; 315 ; 351 ; 357 ; 375 ; 573 ; 537 ; 513 ; 531 ; 753 ; 735 .
3.
a/ Đê 54* chia hết cho 2 thì :
* ∈ {0; 2; 4; 6; 8}
b/ Để 54* chia hết cho 5 thì:
* ∈ {0; 5}
c/ Để 54* chia hết cho 2 và 5 thì:
* = 0
4:
a/ \(\overline{aaa}=100a+10a+a.1=a\left(100+10+1\right)\)
\(=a.111\) ⋮ 37
Vậy \(\overline{aaa}\) ⋮ 37
1. không tính , xét xem tổng nào chia hết cho 6?
a. 45 + 36 b. 1800 - 14 c. 120 + 48 + 20 d. 60 + 15 + 3
2. tổng sau có chia hết cho 2 , cho 5 không ?
a. 1.2.3.4.5 + 56 b. 1.2.3.4.5 - 75
c. 5.6.7 + 50 d. 2456 + 8.9.10
3a,
\(A=1+3+3^2+...+3^{1998}+3^{1999}+3^{2000}\)
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)...+\left(3^{1998}+3^{1999}+3^{2000}\right)\)
\(A=13+3^3\left(1+3+3^2\right)+...+3^{1998}\left(1+3+3^2\right)\)
\(A=13+3^3.13+...+3^{1998}.13\)
\(A=13\left(1+3^3+...+3^{1998}\right)\)
\(\Rightarrow A⋮13\)
ab + ba = 10a + b + 10b + a = 11a + 11b = 11( a+b ) luôn luôn chia hết cho 11
=> ĐPCM
ab+ba= 10a+b+10b+a= 10a+1a+10b+1b
=a.(10+1)+b.(10+1)
=a.11+b.11
=11.(a+b)
=> (ab+ba)chia hết cho 11
a. aaa có dấu gạch trên đầu chia hết cho 37
Ta có aaa=a.37
aaa= a.3.37 chia hết cho 37
Hk tốt