Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,x.\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
\(2,\left(x+12\right).\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
\(3,\left(-x+5\right).\left(3-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Rightarrow\orbr{\begin{cases}-x=-5\\x=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
\(4,24:\left(3x-2\right)=-3\)
\(3x-2=-8\)
\(3x=-6\)
\(x=-2\)
\(5,-45:5\left(-3-2x\right)=3\)
\(5\left(-3-2x\right)=-15\)
\(-3-2x=-3\)
\(2x=0\)
\(x=0\)
\(6,x.\left(2+x\right)\left(7-x\right)=0\)
\(x=0\) hoặc \(\orbr{\begin{cases}2+x=0\\7-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=7\end{cases}}}\)
\(7,\left(x-1\right)\left(x+2\right)\left(-x+3\right)=0\)
TH1: x-1=0 TH2 : x+2=0 TH3: -x+3=0
x=1 x=-2 -x=-3 => x=3
a. 3/5 . 15/7 - 15/7 . 8/5
= 15/7(3/5-8/5)
=15/7. -\(\frac{1}{1}\)
=22/7
b. 4/5 . 1 3/7 + 4/5 . 4/7
=4/5(13/7+4/7)
=4/5.17/7
= 68/35
a) \(\frac{3}{4}x-\frac{1}{4}=2\left(x-3\right)+\frac{1}{4}x\)
\(\frac{3}{4}x-\frac{1}{4}=2x-6+\frac{1}{4}x\)
\(\frac{3}{4}x-2x-\frac{1}{4}x=\frac{1}{4}-6\)
\(x\left(\frac{3}{4}-2-\frac{1}{4}\right)=-\frac{23}{4}\)
\(-\frac{3}{2}x=-\frac{23}{4}\)
\(x=-\frac{23}{4}\div\left(-\frac{3}{2}\right)\)
\(x=\frac{23}{6}\)
c: =>2/3x=1/10+1/2=1/10+5/10=6/10=3/5
hay \(x=\dfrac{3}{5}:\dfrac{2}{3}=\dfrac{9}{10}\)
d: \(\Leftrightarrow\dfrac{4}{9}:x=\dfrac{2}{3}-\dfrac{3}{5}=\dfrac{1}{15}\)
hay \(x=\dfrac{4}{9}:\dfrac{1}{15}=\dfrac{4}{9}\cdot15=\dfrac{20}{3}\)
f: (x+1/2)(2/3-2x)=0
=>x+1/2=0 hoặc 2/3-2x=0
=>x=-1/2 hoặc x=1/3
a) 2x - 8 = 5
2x = 5 + 8
2x = 13
x = \(\frac{13}{2}\)
b) ( 6x - 12 ) . ( x + 5 ) = 0
\(\Rightarrow\orbr{\begin{cases}6x-12=0\\x+5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
c) |2x - 1 | + 3 = 62
|2x - 1 | + 3 = 36
|2x - 1 | = 36 - 3
|2x - 1 | = 33
\(\Rightarrow\orbr{\begin{cases}2x-1=33\\2x-1=-33\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=17\\x=-16\end{cases}}\)
d) 4x - 3 = 2 . ( x + 2 ) - 17
4x - 3 = 2x + 4 - 17
4x - 2x = 4 - 17 + 3
2x = -10
x = -10 : 2
x = -5
a) 2x - 8 = 5
2x = 5 + 8
2x = 13
x = 13/2
vậy x = 13/2
b) ( 6x - 12 ).( x + 5 ) = 0
=> 6x - 12 = 0
x + 5 = 0
=> x = 2
x = -5
vậy x = 2; -5
c) | 2x - 1 | + 3 = 6^2
| 2x - 1 | + 3 = 36
| 2x - 1 | = 36 - 3
| 2x - 1 | = 33
* 2x - 1 = 33
2x = 34
x = 34 : 2
x = 17
* 2x - 1 = -33
2x = -33 + 1
2x = 32
x = 32 : 2
x = 16
vậy x thuộc {17; 16}
a) 2(x - 5) - 3(x + 7) = 14
<=> 2x - 10 - 3x - 21 = 14
<=> 2x - 3x = 14 + 10 + 21
<=> x = -45
Vậy x = -45
b) 5(x - 6) - 2(x + 3) = 12
<=> 5x - 30 - 2x - 6 = 12
<=> 5x - 2x = 12 + 30 + 6
<=> 3x = 48
<=> x = 16
Vậy x = 16
c) 3(x - 4) - (8 - x) = 12
<=> 3x - 12 - 8 + x = 12
<=> 3x + x = 12 + 12 + 8
<=> 4x = 32
<=> x = 8
Vậy x = 8
d) -7(3x - 5) + (7x - 14) = 28
<=> -21x + 35 + 7x - 14 = 28
<=> -21x + 7x = 28 - 35 + 14
<=> -14x = 7
<=> x = -1/2
Vậy x = -1/2
\(a,2\left(x-5\right)-3\left(x+7\right)=14\)
\(\Leftrightarrow2x-10-3x-21=14\)
\(\Leftrightarrow-x=45\)
\(\Leftrightarrow x=-45\)
\(b,5\left(x-6\right)-2\left(x+3\right)=12\)
\(\Leftrightarrow5x-30-2x-6=12\)
\(\Leftrightarrow3x=48\)
\(\Leftrightarrow x=16\)
\(c,3\left(x-4\right)-\left(8-x\right)=12\)
\(\Leftrightarrow3x-12-8+x=12\)
\(\Leftrightarrow4x=32\)
\(\Leftrightarrow x=8\)
\(d,-7\left(3x-5\right)+2\left(7x-14\right)=28\)
\(\Leftrightarrow-21x+35+14x-28=28\)
\(\Leftrightarrow-7x=21\)
\(\Leftrightarrow x=-3\)
a) \(\left(x-5\right)^{12}=\left(x-5\right)^{10}\)
\(\Rightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)
\(\Rightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0^{10}\\\left(x-5\right)^2=0+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0+5\\\left(x-5\right)^2=1^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x-5=\pm1\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x=1+5\\x=-1+5\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x=4\\x=6\end{cases}}\)
Vậy x = 4 hoặc x = 5 hoặc x = 6
\(a)\left(x-5\right)^{12}=\left(x-5\right)^{10}\)
\(\Leftrightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)
\(\Leftrightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-4\right)\left(x-6\right)=0\end{cases}}\)
[ ra \(\left(x-4\right)\left(x-6\right)\)do \(\left(x-5\right)^2-1=\left(x-5-1\right)\left(x-5+1\right)=\left(x-6\right)\left(x-4\right)\)]
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4;x=6\end{cases}}\)
_Minh ngụy_
a) \(\left(x-5\right)-\frac{1}{3}=\frac{2}{5}\)
\(\Rightarrow\left(x-5\right)=\frac{2}{5}+\frac{1}{3}\)
\(\Rightarrow\left(x-5\right)=\frac{11}{15}\)
\(\Rightarrow x-5=\frac{11}{15}\)
\(\Rightarrow x=\frac{11}{15}+5\)
\(\Rightarrow x=\frac{86}{15}\)
b) \(\frac{2}{3}\cdot x-\frac{3}{2}\cdot x=\frac{5}{12}\)
\(\Rightarrow x\cdot\left(\frac{2}{3}-\frac{3}{2}\right)=\frac{5}{12}\)
\(\Rightarrow x\cdot\left(-\frac{5}{6}\right)=\frac{5}{12}\)
\(\Rightarrow x=\frac{5}{12}:\left(-\frac{5}{6}\right)\)
\(\Rightarrow x=-\frac{1}{2}\)
c) \(-\frac{2}{3}\cdot x+\frac{1}{5}=\frac{3}{10}\)
\(\Rightarrow-\frac{2}{3}\cdot x=\frac{3}{10}-\frac{1}{5}\)
\(\Rightarrow-\frac{2}{3}\cdot x=\frac{1}{10}\)
\(\Rightarrow x=\frac{1}{10}:\left(-\frac{2}{3}\right)\)
\(\Rightarrow x=-\frac{3}{20}\)
d) \(4-\left(\frac{1}{2}\cdot x+\frac{3}{4}\right)=-\frac{1}{5}\)
\(\Rightarrow\left(\frac{1}{2}\cdot x+\frac{3}{4}\right)=4-\left(-\frac{1}{5}\right)\)
\(\Rightarrow\)\(\frac{1}{2}\cdot x+\frac{3}{4}=\frac{21}{5}\)
\(\Rightarrow\)\(\frac{1}{2}\cdot x=\frac{21}{5}-\frac{3}{4}\)
\(\Rightarrow\)\(\frac{1}{2}\cdot x=\frac{69}{20}\)
\(\Rightarrow\)\(x=\frac{69}{20}:\frac{1}{2}\)
\(\Rightarrow\)\(x=\frac{69}{10}\)