Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-\left(1-x\right)=5+\left(-1+x\right)\)
\(\Leftrightarrow x-1+x=5-1+x\)
\(\Leftrightarrow2x-1=x+4\)
\(\Leftrightarrow2x-x=1+4\)
\(\Leftrightarrow x=5\)
|x-1|=1
=>x-1 =1 hoặc x-1=-1
TH1: x-1=1 TH2: x-1=-1
=>x=2 =>x=0
vậy x=2,x=0
\(|x-1|=1\)
\(\Rightarrow x-1=1\)
và \(x-1=-1\)
Nếu \(x-1=1\)thì:
\(x=1+1\)
\(x=2\)
Nếu \(x-1=-1\)thì:
\(x=-1+1\)
\(x=0\)
Vậy \(x\in\hept{\begin{cases}2\\0\end{cases}}\)
2155-(174+2155)+(-68+174)
=2155-174-2155-68+174
=(2155-2155)+(-174+174)-68
=-68
-25.21+25.72+49.25
=25.(-21+72+49)
=25.100
=2500
-25.72+25.21-49.25
=25.(-72+21-49)
=25.(-100)
=-2500
2155-(174+2155)+(68+174)=2155-174-2155+68+174=(2155-2155)+(174-174)+68=68
-25.21+25.72+49.25=25(-21+72+49)=25(51+49)=25.100=2500
-25.72+25.21-49.25=-25(72-21+49)=-25.100=-2500
\(B\)\(=\) \(\frac{1}{2015}\) + \(\frac{2}{2014}\)\(+\) ... \(+\) \(\frac{2014}{2}\) + \(\frac{2015}{1}\)
\(=\) \(\left(1+\frac{1}{2015}\right)+\left(1+\frac{2}{2014}\right)+...+\left(1+\frac{2014}{2}\right)+\left(\frac{2015}{1}-2014\right)\)
\(=\) \(\frac{2015}{2016}+\frac{2016}{2014}+...+\frac{2016}{2}+\frac{2016}{2016}\)
\(=\)\(2016.\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+...+\frac{1}{3}+\frac{1}{2}\right)\)
\(=\)2016
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)
\(S=1-\frac{1}{46}< 1\)
Chứng tỏ S < 1
Ủng hộ mk nha ^_^
S = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+......+\frac{3}{43.46}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{43}-\frac{1}{46}\)
\(=1-\frac{1}{46}=\frac{45}{46}< 1\)