Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100 => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101 => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101 Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B => 2B = 1 + 1/2 + 1/22 +..+ 1/299 => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100 => 1/2A = 1 - 1/2100 - 100/2101 Có 1/2A < 1 => A < 2 =>ĐPCM b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101 => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101 Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D => 3D = 1 + 1/3 +..+ 1/399 => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100 => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101 Có 4/3C < 1 => C<3/4 => ĐPCM Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)
Có thể mình hơi phũ tí nhưng mình bảo đảm một thế kỉ sau sẽ không ai ngồi giải hết đống bài này cho bạn đâu, hỏi từng câu thôi
P/s: chắc bạn đánh mỏi tay lắm
Ta có: \(S=7+7^2+7^3+...+7^{4k}\)
=>\(S=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4k-3}+7^{4k-2}+7^{4k-1}+7^{4k}\right)\)
=>\(S=7.\left(1+7+7^2+7^3\right)+...+7^{4k-3}.\left(1+7+7^2+7^3\right)\)
=>\(S=7.400+...+7^{4k-3}.400\)
=>\(S=\left(7+...+7^{4k-3}\right).400\)
=>\(S=\left(7+...+7^{4k-3}\right).4.100\)
=>S chia hết cho 100
=>2 chữ số tận cùng của S là 00
10^k + 8^k + 6^8 là chẵn
9^k + 7^k + 5^k là lẻ
mà chẵn - lẻ là lẻ
=> hiệu trên là lẻ
tương tư thì câu 2 cũng giải như vậy
a)3^n=51
b)3^n.3=243
c)7^n:7^4=49
d)n^4=81
e)2^n.2^4=128
g)5^2:2^n=625
h)n^3=216
k)n^2=2^3+3^2+4^3
l)n^3=n^2
a, Xem lại đề.
b, <=> \(3^{n+1}=3^5\) <=> \(n+1=5\) <=> \(n=4\)
c, <=> \(7^{n-4}=7^2\) <=> \(n-4=2\) <=> \(n=6\)
d, <=> \(n=\pm3\)
e, <=> \(2^{n+4}=2^7\) <=> \(n+4=7\) <=> \(n=3\)
g, <=> \(2^n=\frac{1}{25}\) <=> .... (xem lai đề)
h, <=> \(n=6\)
k, <=> \(n^2=81\) <=> \(n=\pm9\)
l, <=> \(n^2\left(n-1\right)=0\) <=> \(\orbr{\begin{cases}n=0\\n=1\end{cases}}\)
Lời giải:
Phản chứng. Giả sử với \(k^2+4; k^2+16\in\mathbb{P}\) thì tồn tại $k$ không chia hết cho 5
Khi đó ta xét các TH sau:
TH1: \(k=5t+1\). Vì \(k>1\Rightarrow t>1\)
\(\Rightarrow k^2+4=(5t+1)^2+4=25t^2+1+10t+4\)
\(=5(5t^2+2t+1)\)\(\vdots 5\) và \(5(5t^2+2t+1)>5\forall t>1\) nên \(k^2+4\) không thể là số nguyên tố (trái với ĐKĐB)
TH2: \(k=5t+2\)
\(\Rightarrow k^2+16=(5t+2)^2+16=25t^2+20t+20\)
\(=5(5t^2+4t+4)\vdots 5\) và \(5(5t^2+4t+4)>5\) nên \(k^2+16\) không thể là số nguyên tố (trái với ĐKĐB)
TH3: \(k=5t+3\)
\(\Rightarrow k^2+16=(5t+3)^2+16=25t^2+30t+25\)
\(=5(5t^2+6t+5)\vdots 5\) và \(5(5t^2+6t+5)>5\) nên \(k^2+16\) không thể là số nguyên tố (trái với ĐKĐB)
TH4: \(k=5t+4\Rightarrow k^2+4=(5t+4)^2+4=25t^2+40t+20\)
\(=5(5t^2+8t+4)\vdots 5\) và \(5(5t^2+8t+4)>5\) nên \(k^2+4\) không thể là số nguyên tố (trái với ĐKĐB)
Từ các TH trên suy ra điều giả sử là sai. Do đó \(k\vdots 5\)
Tập E có vô số phần tử. Bạn cần làm gì với tập E nhỉ?