Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{5}+\frac{-1}{25}-\frac{7}{20}\)
\(=\frac{3}{5}-\frac{1}{25}-\frac{7}{20}\)
\(=\frac{60}{100}-\frac{4}{100}-\frac{35}{100}\)
\(=\frac{21}{100}\)
\(50\%x+\frac{2}{3}x=x-5\)
\(\Rightarrow\frac{1}{2}x+\frac{2}{3}x=x-5\)
\(\Rightarrow x\left(\frac{1}{2}+\frac{2}{3}\right)=x-5\)
\(\Rightarrow x.\frac{7}{6}=x-5\)
\(\Rightarrow x-\frac{7}{6}x=5\)
\(\Rightarrow\frac{-x}{6}=5\Leftrightarrow-x=30\Leftrightarrow x=-30\)
\(50\%x+\frac{2}{3}x=x-5\)
\(\frac{1}{2}x+\frac{2}{3}x=x-5\)
\(x\left(\frac{1}{2}+\frac{2}{3}\right)=x-5\)
\(x.\frac{7}{6}=x-5\)
\(x.\frac{7}{6}-x=-5\)
\(x.\frac{1}{6}=-5\)
\(x=\left(-5\right):\frac{1}{6}=-30\)
Vậy x= -30
Câu 5:
\(A=1+3+3^2+3^3+...+3^{19}+3^{20}\)
\(\Leftrightarrow3A=3+3^2+3^3+3^4+...+3^{20}+3^{21}\)
\(\Rightarrow3A-A=3^{21}-1\)
\(\Rightarrow2A=3^{21}-1\)
\(\Rightarrow A=\dfrac{3^{21}-1}{2}\)
Câu 3:
c: Trường hợp 1: n=2k
\(\Leftrightarrow n\left(n+2017\right)=2k\cdot\left(2k+2017\right)⋮2\)
Trường hợp 1: n=2k+1
\(\Leftrightarrow n\left(n+2017\right)=\left(2k+1\right)\left(2k+2018\right)⋮2\)
\(a,25.69+31.25-150\\ =25.\left(69+31\right)-150\\ =25.100-150\\ =2500-150\\ =2350\)
\(b,198:\left[130-\left(27-19\right)^2\right]+2021^0\\ =198:\left(130-8^2\right)+1\\ =198:\left(130-64\right)+1\\ =198:66+1\\ =3+1\\ =4\)
\(c,5^{20}:\left(5^{15}.15+5^{15}.10\right)\\ =5^{20}:\left[5^{15}.\left(15+10\right)\right]\\ =5^{20}:\left(5^{15}.25\right)\\ =5^{20}:\left(5^{15}.5^2\right)\\ =5^{20}:5^{17}\\ =5^3\\ =125\)
Bài 1:
BCNN(120,15,38)
Ta có: 120 = 23 . 3 . 5
15 = 3 . 5
38 = 2 . 19
~> BCNN(120,15,38) = 23 . 3 . 5 . 19 = 2280
BCNN(27,39,63)
Ta có: 27 = 33
39 = 3 . 13
63 = 32 . 7
~> BCNN(27,39,63) = 33 . 13 . 7 = 2457
1. BCNN(120,15,38)=2280
BCNN(27,39,63)=2457