Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, + △ABC△ABC vuông ở A nên theo định lí Pytago ta có: AB2+AC2=BC2AB2+AC2=BC2
Hay: 52+AC2=132⟹AC=1252+AC2=132⟹AC=12
+ E là trung điểm của AB nên AE=EB=AB2=52=2,5AE=EB=AB2=52=2,5
+ N là trung điểm của AC nên AN=CN=AC2=122=6AN=CN=AC2=122=6
+ △AEC△AEC vuông ở A nên theo định lí Pytago ta có: EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3EC2=AE2+AC2=2,52+122=150,25⟹EC≈12.3
+ △ANB△ANB vuông ở A nên theo định lí Pytago ta có: NB2=AB2+AN2=62+52=61⟹BN≈7,8NB2=AB2+AN2=62+52=61⟹BN≈7,8
+ Trong tam giác vuông, trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM=BC2=6,5AM=BC2=6,5
Cho tam giác ABC vuông tại A. Các đường trung tuyến AM và BN vuông góc với nhau tại G, AB=a.tính BC?
A B C M H N I E Q K D
a/
\(BN\perp AC;MH\perp AC\) => MH//BN
Xét tg BNC có
MH//BN
MB=MC
=> HN=HC (trong tg đường thẳng // với 1 cạnh và đi qua trung điểm của 1 cạnh thì đi qua trung điểm cạnh còn lại)
Ta có
MH//BN. Xét tg AMH
\(\dfrac{ED}{IM}=\dfrac{EN}{IH}\) (talet)
Mà IM=IH => ED=EN
b/
Xét tg vuông ABN có
\(BN^2=AB^2-AN^2=AC^2-AN^2=\)
\(=AC^2-\left(AC-CN\right)^2=AC^2-\left(AC-2HN\right)^2=\)
\(=AC^2-AC^2+4AC.HN-4HN^2=\)
\(=4HN.\left(AC-HN\right)=4HN\left(AC-HC\right)=\)
\(=4HN.HA\)
Xét tg BCN có
MB=MC; HN=HC => MH là đường trung bình => \(MH=\dfrac{BN}{2}\)
Mà MH=2MI\(\Rightarrow2MI=\dfrac{BN}{2}\Rightarrow BN=4MI\)
Ta có
\(BN^2=4HN.HA\Rightarrow\left(4MI\right)^2=4HN.HA\)
\(\Rightarrow16MI^2=4.HN.HA\Rightarrow MI^2=HN.HA\)
a: \(BM=\sqrt{6^2+8^2}=10\left(cm\right)\)
MD là phân giác
=>BD/BM=DA/AM
=>BD/5=DA/3=(BD+DA)/(5+3)=8/8=1
=>BD=5cm; DA=5cm
b: Xét ΔMBC cóME là phân giác
nên BE/EC=BM/MC=BM/MA=BD/DA
=>DE//AC