K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 1 2021

Lời giải:PT $\Leftrightarrow x^2+x(y-2014)-(2015y+2016)=0$

Coi đây là PT bậc 2 ẩn $x$. Để pt có nghiệm nguyên thì:

$\Delta=(y-2014)^2+4(2015y+2016)=t^2$ với $t\in\mathbb{N}$

$\Leftrightarrow y^2+4032y+4064260=t^2$

$\Leftrightarrow (y+2016)^2+4=t^2$$\Leftrightarrow 4=(t-y-2016)(t+y+2016)$

Đến đây thì đơn giản rồi thì đây là dạng phương trình tích.

 

30 tháng 10 2016

Đề sai rồi bạn, không chia hết cho 6 mà

31 tháng 10 2016

Bạn lai lịch bất thường nhỉ? Lúc hỏi câu lớp 6 lúc thì câu lớp 9, bạn học không kịp CT à

7 tháng 8 2016

\(x^2-6x+8=x\left(x-1\right)-5\left(x-1\right)+3=\left(x-1\right)\left(x-5\right)+3\)

6 tháng 8 2016

\(pt\Leftrightarrow y\left(x-5\right)=x^2-6x+8\)

\(x=5\text{ thì pt trở thành }0y=3\text{ (vô nghiệm)}\)

Xét \(x\ne5\)

\(pt\Leftrightarrow y=\frac{x^2-6x+8}{x-5}=x-1+\frac{3}{x-5}\)

Tới đây, bài toán đã đơn giản hơn.

6 tháng 9 2016

Ta có : \(2x^2+y^2+3xy+3x+2y+2=0\)

\(\Leftrightarrow y^2+y\left(3x+2\right)+2x^2+3x+2=0\)

Nhận thấy pt trên là phương trình bậc hai ẩn y  . Do đó ta xét 

\(\Delta=\left(3x+2\right)^2-4\left(2x^2+3x+2\right)=x^2-4\)

Để pt có nghiệm thì \(\Delta\ge0\Rightarrow x^2-4\ge0\) \(\Rightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)

Mà x,y là nghiệm nguyên của pt nên \(x^2-4\) là bình phương của một số hữu tỉ , đặt \(x^2-4=k^2\Rightarrow\left(x-k\right)\left(x+k\right)=4\) . Ta luôn có x + k > x - k với k > 0 

Xét các trường hợp với x-k và x+k là các số nguyên được 

\(\begin{cases}x=2\\k=0\end{cases}\) và \(\begin{cases}x=-2\\k=0\end{cases}\)

Suy ra được : \(\begin{cases}x=-2\\y=2\end{cases}\) và \(\begin{cases}x=2\\y=-4\end{cases}\)