Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây nhé
Đặt b + c = x ; c + a = y ; a + b = z
\(\Rightarrow\hept{\begin{cases}x+y=2c+b+a=2c+z\\y+z=2a+b+c=2a+x\\x+z=2b+a+c=2b+y\end{cases}}\)
\(\Rightarrow\frac{x+y-z}{2}=c;\frac{y+z-x}{2}=a;\frac{x+z-y}{2}=b\)
Thay vào PT đã cho ở đề bài , ta có :
\(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}-3\right)\)
\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)
( cái này cô - si cho x/y + /x ; x/z + z/x ; y/z + z/y)
Đặt \(\left(\frac{a}{b+c};\frac{b}{c+a};\frac{c}{a+b}\right)\rightarrow\left(x;y;z\right)\) Khi đó ta có:
\(\left(x+y+z\right)^2+14xyz\ge4\)
Theo BĐT Nesbit \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\Rightarrow x+y+z\ge\frac{3}{2}\)
\(VT=\left(x+y+z\right)^2+14xyz=x^2+y^2+z^2+2\left(xy+yz+xz\right)+14xyz\)
\(=x^2+y^2+z^2+6xyz+2\left(xy+yz+xz\right)+8xyz\)
\(\ge x^2+y^2+z^2+\frac{9xyz}{x+y+z}+2\left(xy+yz+xz\right)+8xyz\)
\(\ge4\left(xy+yz+xz\right)+8xyz=4\)
\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\frac{\sqrt{a}}{b+c}\right)^2+\left(\frac{\sqrt{b}}{c+a}\right)^2+\left(\frac{\sqrt{c}}{a+b}\right)^2\right]\)
Áp dúng bất đẳng thức Bunhiacopxki ta có :
\(VT\ge\left(\sqrt{a}.\frac{\sqrt{a}}{b+c}+\sqrt{b}.\frac{\sqrt{b}}{c+a}+\sqrt{c}.\frac{\sqrt{c}}{a+b}\right)^2\)
\(\Leftrightarrow VT\ge\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\)
Xét \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Áp dụng bất đẳng thức Cauchy dạng phân thức ta có :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ac}+\frac{b^2}{bc+ab}+\frac{c^2}{ca+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\frac{3}{2}\)
\(\Rightarrow\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2\ge\left(\frac{3}{2}\right)^2=\frac{9}{4}\)
\(\Rightarrow VT\ge\frac{9}{4}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c\)
Chúc bạn học tốt !!!
Bất đẳng thức
<=> \(\frac{a\left(a+b+c\right)}{\left(b+c\right)^2}+\frac{b\left(a+b+c\right)}{\left(c+a\right)^2}+\frac{c\left(a+b+c\right)}{\left(a+b\right)^2}\ge\frac{9}{4}\)
VT = \(\left(\frac{a^2}{\left(b+c\right)^2}+\frac{b^2}{\left(a+c\right)^2}+\frac{c^2}{\left(a+b\right)^2}\right)+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(\ge\frac{1}{3}.\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)^2+\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
lại có:
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3=\frac{3}{2}\)
=> VT\(\ge\frac{1}{3}.\left(\frac{3}{2}\right)^2+\frac{3}{2}=\frac{9}{4}\)
Dấu "=" xảy ra <=> a = b = c.
Hoặc em có thể áp dụng Bunhia
bất đẳng thức
<=> \(\left(a+b+c\right)\left(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\right)\ge\frac{9}{4}\)
VT\(\ge\left(\frac{a}{b+c}+\frac{c}{a+b}+\frac{b}{a+c}\right)^2\ge\left(\frac{3}{2}\right)^2=\frac{9}{4}\)
Chuẩn hóa \(a+b+c=3\) rồi dùng hệ số bất định nha bạn.Mình nhác quá chỉ gợi ý thôi.Nếu cần thì trưa mai đi học về mình làm cho.
Bài 2: Ta có 2 đẳng thức ngược chiều: \(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}\ge8;\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\le8\)
Áp dụng BĐT AM-GM ta có:
\(\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}\)\(\ge2\sqrt{\frac{8\left(a^2+b^2+c^2\right)}{ab+bc+ca}.\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+c\right)^3}}\)
Suy ra BĐT đã cho là đúng nếu ta chứng minh được
\(27\left(a^2+b^2+c^2\right)\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(ab+bc+ca\right)\left(a+b+c\right)^3\left(1\right)\)
Sử dụng đẳng thức \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)và theo AM-GM: \(abc\le\frac{1}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\)ta được \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\frac{8}{9}\left(a+b+c\right)\left(ab+bc+ca\right)\left(2\right)\)
Từ (1)và(2) suy ra ta chỉ cần chứng minh \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)đúng=> đpcm
Đẳng thức xảy ra khi và chỉ khi a=b=c
Bài 3:
Ta có 2 BĐT ngược chiều: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2};\sqrt[3]{\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\le\sqrt[3]{\frac{1}{8}}=\frac{1}{2}\)
Bổ đề: \(x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\left(1\right)\forall x,y,z\ge0\)
Chứng minh: Không mất tính tổng quát, giả sử \(x\ge y\ge z\). Khi đó:
\(VT\left(1\right)-VP\left(1\right)=x\left(x-y\right)^2+z\left(y-z\right)^2+\left(x-y+z\right)\left(x-y\right)\left(y-z\right)\ge0\)
Áp dụng BĐT AM-GM ta có:
\(\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)\(\Leftrightarrow\frac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\left[\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\right]^3\)
Suy ra ta chỉ cần chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{4abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)
\(\Leftrightarrow a\left(a+b\right)\left(a+c\right)+b\left(b+c\right)\left(b+a\right)+c\left(c+a\right)\left(c+b\right)+4abc\)\(\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)\(\Leftrightarrow a^3+b^3+c^3+3abc\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)đúng theo bổ đề
Đẳng thức xảy ra khi và chỉ khi a=b=c hoặc a=b,c=0 và các hoán vị
Cách này khá phức tạp dùng để tìm BĐT phụ
Để giải dễ hơn và không mất tính tổng quát thì giả sử a+b+c=3. Điểm rơi: a=b=c=1 và Min=3/4
Bất đẳng thức quy về dạng
\(\frac{a}{\left(a-3\right)^2}+\frac{b}{\left(b-3\right)^2}+\frac{c}{\left(c-3\right)^2}\ge\frac{3}{4}\)
Tìm m,n sao cho: \(\frac{a}{\left(a-3\right)^2}\ge am+n\)
Tương tự với \(\frac{b}{\left(b-3\right)^2}\)và \(\frac{c}{\left(c-3\right)^2}\)
Ta có: \(VT\ge\left(a+b+c\right)m+3n=3\left(m+n\right)\)
\(\Rightarrow3\left(m+n\right)=\frac{3}{4}\Rightarrow m+n=\frac{1}{4}\Rightarrow m=\frac{1}{4}-n\)
Thế ngược lên trên:
\(\frac{a}{\left(a-3\right)^2}\ge\frac{1}{4}a-an+n\)
\(\Leftrightarrow\frac{a}{\left(a-3\right)^2}-\frac{1}{4}a\ge n\left(1-a\right)\)
\(\Leftrightarrow a\left(\frac{1}{\left(a-3\right)^2}-\frac{1}{4}\right)\ge n\left(1-a\right)\)
\(\Leftrightarrow a\left(\frac{-\left(a^2-6a+5\right)}{4\left(a-3\right)^2}\right)\ge n\left(1-a\right)\)
\(\Leftrightarrow\frac{a\left(1-a\right)\left(a-5\right)}{4\left(a-3\right)^2}\ge n\left(1-a\right)\)
\(\Rightarrow n=\frac{a\left(a-5\right)}{4\left(a-3\right)^2}=\frac{1}{4}\)khi a=1 (điểm rơi lấy xuống)
\(\Rightarrow m=\frac{1}{2}\)
BĐT phụ cần CM: \(\frac{a}{\left(a-3\right)^2}\ge\frac{2a-1}{4}\)
Cho a,b,c>0. Cmr: a/(b+c)^2+b/(c+a)^2+c/(a+b)^2>=9/[4(a+b+c)]. Giup minh vs...!? | Yahoo Hỏi & Đáp