Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ một điểm A dựng đoạn thẳng AD = 2 cm
Lấy A làm tâm dựng đường tròn bán kính 3,5 cm
Lấy D làm tâm, dựng đường tròn bán kính 4 cm
Hai đường tròn trên cắt nhau tại C
Từ C dựng đoạn thẳng CB//AD và CB = 2,5 cm (B cùng phía với A)
Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán.
Tam giác ADC dựng được vì biết ba cạnh AD = 2cm, DC = 4cm, AC = 3,5cm. Điểm B thỏa mãn hai điều kiện:
- B nằm trên đường thẳng đi qua A và song song với CD.
- B cách C một khoảng bằng 2,5cm.
Cách dựng:
- Dựng ∆ ADC biết AD = 2cm, DC = 4cm, AC = 3,5cm
- Dựng tia Ax // CD. Ax nằm trong nửa mặt phẳng bờ AD chứa điểm C.
- Dựng cung tròn tâm C bán kính 2,5cm. Cung này cắt Ax tại B, nối CB ta có hình thang ABCD cần dựng.
Chứng minh:
Tứ giác ABCD là hình thang vì AB // CD.
Hình thang ABCD có: AD = 2cm, CD = 4cm, AC = 3,5cm, BC = 2,5cm thỏa mãn yêu cầu bài toán.
Biện luận: Vì ∆ ADC luôn dựng được nên hình thang ABCD dựng được .
Vì cung tròn tâm C bán kính 3cm cắt Ax tại hai điểm nên ta dựng được hai hình thang thỏa mãn bài toán.
Dựng tam giác ACD, sau đó dựng điểm B (bằng cách dựng \(\widehat{DCB=\widehat{D}}\) hoặc \(DB=3,5cm\))
* Dựng hình:
- Dựng tam giác ADC có AD = 2cm, DC = 4cm, CA = 5cm.
- Dựng tia Ax song song với CD.
- Đường tròn (C; 3cm) cắt Ax tại B1 và B2.
Hình thang ABCD với B ≡ B1 hoặc B ≡ B2 là hình thang cần dựng.
* Chứng minh
+ Tứ giác ABCD có AD = 2cm, DC = 4cm, CA = 5cm.
+ Ax // CD ⇒ AB // CD ⇒ ABCD là hình thang.
+ B ∈ (C; 3cm) ⇒ BC = 3cm.
Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn bài toán.
Ta thấy ∆ ADC xác định được vì biết AD = 2cm, ∠ D = 90 0 , DC = 4cm. Ta cần xác định đỉnh B. Đỉnh B thỏa mãn hai điều kiện:
- B nằm trên tia Ax//CD
- B cách C một khoảng bằng 3cm
Cách dựng:
- Dựng ΔADC biết:
AD = 2cm, ∠ D = 90 0 , DC = 4cm
- Dựng Ax ⊥ AD
- Dựng cung tròn tâm C bán kính bằng 3cm, cắt Ax tại B.
Nối BC ta có hình thang ABCD dựng được.
Chứng minh:
Thật vậy theo cách dựng, ta có: AB // CD , ∠ D = 90 0
Tứ giác ABCD là hình thang vuông
Lại có AD = 2cm, CD = 4cm, BC = 3cm
Hình thang dựng được thỏa mãn điều kiện bài toán.
Biện luận: ∆ ADC dựng được, hình thang ABCD luôn dựng được.
Bài toán có hai nghiệm hình.
Phân tích: Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán. Tam giác ADC dựng được vì biết ba cạnh AD = 2cm, CD = 4cm, AC= 3,5cm. Điểm B thỏa mãn 2 điều kiện:
- B nằm trên đường thẳng đi qua A và song song với CD.
- B cách D một khoảng bằng 3,5cm( vì ABCD là hình thang cân nên hai đường chéo bằng nhau).
Cách dựng:
- Dựng ∆ ADC biết:
AD = 2cm, AC = 3,5cm, CD = 4cm.
- Dựng tia Ax // CD. Ax nằm trong nửa mặt phẳng bờ AD chứa điểm C.
- Dựng cung tròn tâm D bán kính 3,5cm. Cung này cắt Ax tại B. Nối CB, ta có hình thang ABCD cần dựng.
Chứng minh:
Tứ giác ABCD là hình thang vì AB //CD.
AC = BD = 3,5cm
Vậy hình thang ABCD là hình thang cân.
Hình thang cân ABCD có: AD = 2cm, CD = 4cm, AC = 3,5cm thỏa mãn yêu cầu bài toán.
Biện luận: Tam giác ADC luôn dựng được nên hình thang ABCD luôn dựng được. Cung tròn tâm D bán kính 3,5cm cắt Ax tại 1 điểm nên ta dựng được một hình thang thỏa mãn yêu cầu bài toán.
A B C D 2 2 4 4
1) Phân tích: Giả sử đã dựng được hình thang ABCD. ta thấy:
- Dựng được ngay tam giác ADC (vì đã biết đọ dài 3 cạnh )
- Cạnh AB cho 2 điều kiện : AB //CD và AB = 2 cm
2) cách dựng:
- Dựng tam giác ADC biết AD - 2 ; AC = CD = 4 (Dùng thước và com pa: dựng đoạn CD = 4; dựng đường tròn (C; 4) và (D; 2) cắt nhau tại A)
- Dựng tia Ax // CD (Ax và DC nằm trên cùng một nửa mặt phẳng bờ là AD)
- Dựng đường tron (A; 2) cắt Ax tại B
- Nối BC ta được hình thang ABCD
3) Chứng minh:
theo cách dựng Ax // CD => AB //CD => Tứ giác ABCD là hình thang
hình thang ABCD có: AB = AD = 2; AC = CD = 4
4) bài toán có 1 nghiệm hình
(Chú ý: Trong cách dựng: hai đường tròn tâm C và D cắt nhau tại 2 điểm => có 2 điểm A thỏa mãn => có 2 hình thang ABCD thỏa mãn nằm ở 2 nửa mặt phẳng đối nhau bờ là CD. Tuy nhiên, trong bài toán dựng hình về kích thước: nếu hai hình bằng nhau thì ta coi là 1 nghiệm hình)
Dựng tam giác ACD, sau đó dựng điểm B