Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3\(\sqrt{5}\)= \(\sqrt{3^2.5}\)=\(\sqrt{45}\)
-5\(\sqrt{2}\)= \(-\sqrt{5^2.2}\)= -\(\sqrt{50}\)
\(\dfrac{-2}{3}\sqrt{xy}\) = \(-\sqrt{\left(\dfrac{2}{3}\right)^2xy}\) = -\(\sqrt{\dfrac{4}{9}xy}\)
x\(\sqrt{\dfrac{2}{x}}\)= \(\sqrt{\dfrac{2x^2}{x}}=\sqrt{2x}\)
a) \(\sqrt{27x^2}=\sqrt{3.\left(3x\right)^2}=\left|3x\right|.\sqrt{3}=3x\sqrt{3}\left(x>0\right)\)
b) \(\sqrt{8xy^2}=\left|y\right|.2\sqrt{2x}=-2y\sqrt{2x}\left(x\ge0,y\le0\right)\)
1) \(x\sqrt{13}=\sqrt{13x^2}\left(x\ge0\right)\)
2) \(x\sqrt{-15x}=-\left|x\right|\sqrt{15x}=-\sqrt{15x^3}\left(x< 0\right)\)
3) \(x\sqrt{2}=-\left|x\right|\sqrt{2}=-\sqrt{2x^2}\left(x\le0\right)\)
a: \(=\sqrt{\left(2-a\right)^2\cdot\dfrac{2a}{a-2}}=\sqrt{2a\left(a-2\right)}\)
b: \(=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{\left(5-x\right)\left(5+x\right)}}\)
\(=\sqrt{\left(x-5\right)\cdot\dfrac{x}{x+5}}\)
c: \(=\sqrt{\left(a-b\right)^2\cdot\dfrac{3a}{\left(b-a\right)\left(b+a\right)}}=\sqrt{\dfrac{3a\left(b-a\right)}{b+a}}\)
a. \(\sqrt{\dfrac{2}{3}}=\sqrt{\dfrac{2.3}{3^2}}=\dfrac{1}{3}.\sqrt{6}\)
b. \(\sqrt{\dfrac{x^2}{5}}=\sqrt{\dfrac{5x^2}{5^2}}=\dfrac{x}{5}.\sqrt{5}\) (vì x \(\ge\) 0)
c. \(\sqrt{\dfrac{3}{x}}=\sqrt{\dfrac{3.x}{x^2}}=\dfrac{1}{x}.\sqrt{3x}\) (vì x > 0)
d. \(\sqrt{x^2-\dfrac{x^2}{7}}=\sqrt{\dfrac{6x^2}{7}}=\sqrt{\dfrac{6x^2.7}{7.7}}=\sqrt{\dfrac{42.x^2}{7^2}}=-\dfrac{x}{7}.\sqrt{42}\) (vì x < 0)
a: \(=-xy\cdot\dfrac{\sqrt{xy}}{x}=-y\sqrt{yx}\)
b: \(=\sqrt{\dfrac{-105x^3}{35^2}}=\sqrt{-105x}\cdot\dfrac{x}{35}\)
c: \(=\sqrt{\dfrac{5a^3b}{49b^2}}=\sqrt{5ab}\cdot\dfrac{a}{7b}\)
d: \(=-7xy\cdot\dfrac{\sqrt{3}}{\sqrt{xy}}=-7\sqrt{3}\cdot\sqrt{xy}\)
\(3\sqrt{5}=\sqrt{45}\)
\(-5\sqrt{2}=-\sqrt{25}.\sqrt{2}=-\sqrt{50}\)
\(\dfrac{-2}{3}\sqrt{xy}=-\sqrt{\dfrac{4}{9}}.\sqrt{xy}=-\sqrt{\dfrac{4}{9}xy}\left(xy\ge0\right)\)
\(x\sqrt{\dfrac{2}{x}}=\sqrt{x^2}.\sqrt{\dfrac{2}{x}}=\sqrt{\dfrac{2x^2}{x}}=\sqrt{2x}\left(x>0\right)\)
\(A=\left(x-2\right)\cdot\sqrt{\dfrac{9}{\left(x-2\right)^2}}+3=\dfrac{3\left(x-2\right)}{\left|x-2\right|}+3=\dfrac{3\left(x-2\right)}{-\left(x-2\right)}=-3+3=0\)
\(B=\sqrt{\dfrac{a}{6}}+\sqrt{\dfrac{2a}{3}}+\sqrt{\dfrac{3a}{2}}=\dfrac{\sqrt{a}}{\sqrt{6}}+\dfrac{\sqrt{2a}}{\sqrt{3}}+\dfrac{\sqrt{3a}}{\sqrt{2}}=\dfrac{\sqrt{a}+2\sqrt{a}+3\sqrt{a}}{\sqrt{6}}=\dfrac{6\sqrt{a}}{\sqrt{6}}=\sqrt{6a}\)
\(E=\sqrt{9a^2}+\sqrt{4a^2}+\sqrt{\left(1-a\right)^2}+\sqrt{16a^2}=3\left|a\right|+2\left|a\right|+\left|1-a\right|+4\left|a\right|=9\left|a\right|+1-a=-9a+1-a=-10a+1\)
\(F=\left|x-2\right|\cdot\dfrac{\sqrt{x^2}}{x}=\left|x-2\right|\cdot\dfrac{\left|x\right|}{x}=\dfrac{x\left(x-2\right)}{x}=x-2\)
\(H=\dfrac{x^2+2\sqrt{3}\cdot x+3}{x^2-3}=\dfrac{\left(x+\sqrt{3}\right)^2}{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}=\dfrac{x+\sqrt{3}}{x-\sqrt{3}}\)
\(I=\left|x-\sqrt{\left(x-1\right)^2}\right|-2x=\left|x-\left(-\left(x-1\right)\right)\right|-2x=\left|x+x-1\right|-2x=\left|2x-1\right|-2x=1-4x\)
B=\(\dfrac{\sqrt{a.6}}{\sqrt{6.6}}+\dfrac{\sqrt{2a.3}}{\sqrt{3.3}}+\dfrac{\sqrt{3a.2}}{\sqrt{2.2}}\)
=\(\dfrac{\sqrt{6a}}{6}+\dfrac{\sqrt{6a}}{3}+\dfrac{\sqrt{6a}}{2}\)
=\(\dfrac{\sqrt{6a}+2\sqrt{6a}+3\sqrt{6a}}{6}\)
=\(\dfrac{6\sqrt{6a}}{6}=\sqrt{6a}\)
b: \(B=\dfrac{\sqrt{6}}{6}\cdot\sqrt{a}+\dfrac{\sqrt{6}}{3}\cdot\sqrt{a}+\dfrac{\sqrt{6}}{2}\cdot\sqrt{a}\)
\(=\sqrt{a}\cdot\sqrt{6}=\sqrt{6a}\)
e: \(=2-x-x=2-2x\)
i: \(=\left|x-\left(1-x\right)\right|-2x=\left|x-1+x\right|-2x\)
\(=\left|2x-1\right|-2x\)
=1-2x-2x=1-4x
a: \(2\sqrt{x^2}=2\left|x\right|=-2x\)
b: \(=\dfrac{1}{2}\cdot\left| x^5\right|=-\dfrac{1}{2}x^5\)
c: \(=\left|\left(a-5\right)^2\right|=\left(a-5\right)^2\)
d: \(=\left|8a\right|+2a=8a+2a=10a\)
e: \(=\left|3a^3\right|-6a^3=-3a^3\)
a )\(\sqrt{5x^2}\)
b )\(-\sqrt{13x^2}\)
c )\(\sqrt{11x}\)
d)\(-\sqrt{-29x}\)