K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

a/ 3 + 2\(\sqrt{2}\) = 2 + 2\(\sqrt{2}\) + 1 = \(\sqrt{2}^2\) + 2\(\sqrt{2}\) + 12 = ( \(\sqrt{2}\) + 1 )2

b/ 3 - \(\sqrt{8}\) = 2 - \(\sqrt{4.2}\) + 1 = 2 - 2\(\sqrt{2}\) + 1 = \(\sqrt{2}^2\) - 2\(\sqrt{2}\) + 12

= ( \(\sqrt{2}\) - 1 )2

c/ 9 + 4\(\sqrt{5}\) = 4 + 2.2\(\sqrt{5}\) + 5 = 22 + 2.2\(\sqrt{5}\) + \(\sqrt{5}\)2

= ( 2 + \(\sqrt{5}\) )2

d/ 23 - 8\(\sqrt{7}\) = 16 - 2.4.\(\sqrt{7}\) + 7 = 42 - 2.4.\(\sqrt{7}\) + \(\sqrt{7}^2\)

= ( 4 - \(\sqrt{7}\) )2

9 tháng 8 2017

a)

\(3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}^2\right)+2\times\sqrt{2}\times1=\left(\sqrt{2}+1\right)^2\)

mấy câu còn lại tương tự

2 tháng 9 2017

\(13-4\sqrt{3}=\left(2\sqrt{3}\right)^2-2.2\sqrt{2}.1+1^2=\left(2\sqrt{3}-1\right)^2\)

a) \(\left(\sqrt{5}+\sqrt{3}\right)\sqrt{8-2\sqrt{15}}=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)

câu này \(\sqrt{15}\)đúng hơn \(\sqrt{5}\)

b) \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}=\frac{\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{5}-1-\sqrt{5}-1}{\sqrt{2}}=\frac{-2}{\sqrt{2}}=-\sqrt{2}\)c) \(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}=\sqrt{3}-\sqrt{2}-\sqrt{3}-\sqrt{2}=-2\sqrt{2}\)

31 tháng 5 2018

1)d) \(\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(=\sqrt{4^2+2.4.\sqrt{7}+\sqrt{7^2}}-\sqrt{7}\)

\(=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(=4+\sqrt{7}-\sqrt{7}\)

\(=4\)

28 tháng 8 2018

a) \(\sqrt{9-4\sqrt{5}}+\sqrt{5}\)

=\(\sqrt{\left(\sqrt{2}\right)^2-2.2\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{5}\)

=\(\sqrt{\left(\sqrt{2}-\sqrt{5}\right)^2}+\sqrt{5}\)

=\(\left|\sqrt{2}-\sqrt{5}\right|+\sqrt{5}\)

=\(\sqrt{2}-\sqrt{5}+\sqrt{5}\)

=\(\sqrt{2}\)

29 tháng 7 2018

\(a,\) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{4-2\sqrt{3}}\\ =2-\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}\\ =2-\sqrt{3}+\sqrt{3}-1\\ =1\)

\(b,\) \(\sqrt{15-6\sqrt{6}}\\ =\sqrt{\left(3-\sqrt{6}\right)^2}\\ =3-\sqrt{6}\)

NV
7 tháng 4 2019

a/ \(A=\frac{30\left(\sqrt{6}-1\right)}{5}+\frac{2\left(\sqrt{6}+2\right)}{2}-\frac{6\left(3+\sqrt{6}\right)}{3}=6\sqrt{6}-6+\sqrt{6}+2-6-2\sqrt{6}\)

\(A=5\sqrt{6}-10\)

\(B=\sqrt{17-6\sqrt{2}+\sqrt{8+4\sqrt{2}+1}}\)

\(B=\sqrt{17-6\sqrt{2}+\sqrt{\left(2\sqrt{2}+1\right)^2}}=\sqrt{18-4\sqrt{2}}\)

Đến đây ko rút gọn được nữa, nhưng nếu đề là:

\(B=\sqrt{17+6\sqrt{2}+\sqrt{8+4\sqrt{2}+1}}=\sqrt{18+8\sqrt{2}}=4+\sqrt{2}\)

c/

\(C=\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}+\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(C=\sqrt{7}-1+\sqrt{7}+1=2\sqrt{7}\)

NV
7 tháng 4 2019

\(D=\sqrt{a-2\sqrt{a}+1}-\sqrt{a-8\sqrt{a}+16}\)

\(D=\sqrt{\left(\sqrt{a}-1\right)^2}-\sqrt{\left(4-\sqrt{a}\right)^2}=\sqrt{a}-1-\left(4-\sqrt{a}\right)=2\sqrt{a}-5\)

\(E=\sqrt{a-2+2\sqrt{a-2}+1}+\sqrt{a-2-2\sqrt{a-2}+1}\) (\(a\ge2\))

\(E=\sqrt{\left(\sqrt{a-2}+1\right)^2}+\sqrt{\left(\sqrt{a-2}-1\right)^2}\)

\(E=\sqrt{a-2}+1+\left|\sqrt{a-2}-1\right|\)

\(\Rightarrow\left[{}\begin{matrix}E=2\sqrt{a-2}\left(a\ge3\right)\\E=2\left(2\le a\le3\right)\end{matrix}\right.\)

\(F=\sqrt[3]{10+6\sqrt{3}}-\sqrt{3}=\sqrt[3]{1+3.1.\sqrt{3}+3.1.\sqrt{3}^2+\sqrt{3}^3}-\sqrt{3}\)

\(F=\sqrt[3]{\left(1+\sqrt{3}\right)^3}-\sqrt{3}=1+\sqrt{3}-\sqrt{3}=1\)

\(G=\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\Rightarrow G^3=\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)^3\)

\(\Rightarrow G^3=14+3\left(\sqrt[3]{7+5\sqrt{2}}+\sqrt[3]{7-5\sqrt{2}}\right)\left(\sqrt[3]{49-50}\right)\)

\(\Rightarrow G^3=14-3G\Rightarrow G^3+3G-14=0\)

\(\Rightarrow G=2\)

17 tháng 6 2017

câu đầu bạn xem lại đề đi nha 

các phần còn lại

b)B=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)=\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)=\(\sqrt{7}-1-\left(\sqrt{7}+1\right)=-2\)

c)tính từng căn nha

\(\sqrt{13-4\sqrt{3}}=\sqrt{12-2\sqrt{12}+1}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1=2\sqrt{3}-1\)

\(\sqrt{22-12\sqrt{2}}=\sqrt{18-4\sqrt{18}+4}=\sqrt{\left(\sqrt{18}-2\right)^2}=\sqrt{18}-2=3\sqrt{2}-3\)

\(\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}=3\sqrt{2}-2\sqrt{3}\)

thay vào tính C đc C=2

d)có \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\sqrt{8}+1}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)\(\Rightarrow6\sqrt{2+\sqrt{9+4\sqrt{2}}}=6\sqrt{2+\sqrt{8}+1}=6\sqrt{2+2\sqrt{2}+1}\)

=\(6\sqrt{\left(\sqrt{2}+1\right)^2}=6\left(\sqrt{2}+1\right)=6\sqrt{2}+6\)\(\Rightarrow D=\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2}-6}=\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}\)

=\(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)

13 tháng 5 2018

a)\(\sqrt{13-4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{12-2.2\sqrt{3}.1+1}+\sqrt{4-2.2.\sqrt{3}+3}\)

\(=\sqrt{\left(2\sqrt{3}-1\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|2\sqrt{3}-1\right|+\left|2-\sqrt{3}\right|\)

\(=2\sqrt{3}-1+2-\sqrt{3}=\sqrt{3}+1\)

b)\(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{5-2\sqrt{5}.1+1}\)

\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\left(\sqrt{5}+1\right)+\left(\sqrt{5}-1\right)=2\sqrt{5}\)

c)\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3+2\sqrt{3}.1+1}-\sqrt{3-2\sqrt{3}.1+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left(\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)=2\)

d)\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{4+2.2\sqrt{3}+3}+\sqrt{4-2.2.\sqrt{3}+3}\)

\(=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left(2+\sqrt{3}\right)+\left(2-\sqrt{3}\right)=4\)

e)\(\sqrt{9+4\sqrt{5}}=\sqrt{5+2.\sqrt{5}.2+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=\sqrt{5}+2\)

f)\(\sqrt{23+8\sqrt{7}}=\sqrt{16+2.4.\sqrt{7}+7}=\sqrt{\left(4+\sqrt{7}\right)^2}=4+\sqrt{7}\)