Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay A(1; -9) vào (d), ta có:
-9 = 3m + 1 - m2
<=> -9 - 3m - 1 + m2 = 0
<=> -10 - 3m + m2 = 0
<=> m = 5 hoặc m = -2
b) Lập phương trình hoành độ giao điểm:
x2 = 3mx + 1 - m2
<=> x2 - 3mx - 1 + m2 = 0
Để (d) cắt (P) tại hai điểm phân biệt <=> \(\Delta>0\)
<=> (-3m)2 - 4.1.(-1 + m2) = 0
<=> 9m2 + 4 - 4m2 > 0
<=> 5m2 + 4 > 0\(\forall m\)
Ta có: x1 + x2 = 2x1x2
Theo viet ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=3m\\x_1x_2=\frac{c}{a}=-1+m^2\end{cases}}\)
<=> 3m = 2(-1 + m2)
<=> 3m = -2 + m2
<=> 3m + 2 - m2 = 0
<=> \(x_{1;2}=\frac{3\pm\sqrt{17}}{2}\)
Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-6x+m+4=0\)
\(\Delta'=9-\left(m+4\right)=-m+5\)
Để (P) cắt (d) tại 2 điểm pb khi \(5-m>0\Leftrightarrow m< 5\)
Theo Vi et \(\hept{\begin{cases}x_1+x_2=6\\x_1x_2=m+4\end{cases}}\)
Thay vào ta được \(6.2020-2021.\left(m+4\right)=2014\)
\(\Leftrightarrow4036-2021m=2014\Leftrightarrow m=\frac{2022}{2021}\)(tm)
Pt hoành độ giao điểm: \(x^2-6x+m+4=0\) (1)
(P) cắt (d) tại 2 điểm pb khi: \(\Delta'=9-\left(m+4\right)>0\Rightarrow m< 5\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=m+4\end{matrix}\right.\)
\(2020\left(x_1+x_2\right)-2021x_1x_2=2014\)
\(\Leftrightarrow2020.6-2021\left(m+4\right)=2014\)
\(\Rightarrow m=\dfrac{2022}{2021}\)
Phương trình hoành độ giao điểm:
x2=2x−3m+5
⇔x2−2x+3m−5=0
(P) cắt (d) tại 2 điểm phân biệt khi (*) có Δ′>0Δ′>0
⇔1−3m+5>0
⇔m<2
⇒x1+x2=2;x1.x2=3m−5
x21+x22=x1.x2+2
⇔(x1+x2)2−3x1.x2=2
⇔22−3(3m−5)=2
⇔m=179
a) x = 6 và y = -4
b) Thay (d2) = M(x,y) trong đó x = 6 và y = -4 => 4x + ky = 2k + 18
<=> 24 - 4k = 2k + 18
<=> -6k = -6
<=> k = 1