Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
2H=22011-22010-22009-...-22-2
-
H=22010-22009-22008-...-2-1
----------------------------------------------------
=>2H-H=H=22011-22010-22010-1=22011-(22010+22010)-1=22011-22010.2-1=22011-22011-1=0-1=-1
=>2010H=2010-1=1/2010
Chúc bạn học giỏi nha!!!
K cho mik vs nhé Không Cần Biết
H=22010-22009-22008-..-2-1
=>2H=22011-22010-22009-...-22-2
=>2H-H=22011-22010-22009-..-22-22010+22009+22008+..+2+1
=>H=22011-22011+1=1
=>2010H=20101=2010
Ta có 2H = 2.(22010 - 22009 - 22008 - ... - 2 -1)
2H = 22011 - 22010 - 22009 - ... - 22 - 2
2H - H = 22011 - 22010 - 22009 - ... - 22 - 2 - 22010 + 22009 + 22008 + ... + 2 + 1
H = 22011 - (22010 + 22010) - (22009 - 22009) - (22008 - 22008) - ... - (2 - 2) + 1
H = 1
=> 2010H = 20101 = 2010
32010- ( 32009 + 32008 + ... + 3 + 1 )
Đặt A = 1 + 3 + ... + 32009
=> 3A = 3 + 32 + ... + 32010
=> 3A - A = 32010 - 1
Nên 32010 - ( 32010 - 1 ) = 1
\(M=2^{2010}-\left(2^{2009}+2^{2008}+...+2^1+2^0\right)\)
\(2^{2010}-M=2^0+2^1+...+2^{2008}+2^{2009}\)
\(2\left(2^{2010}-M\right)=2+2^2+...+2^{2009}+2^{2010}\)
\(2\left(2^{2010}-M\right)-\left(2^{2010}-M\right)=\left(2+2^2+...+2^{2009}+2^{2010}\right)-\left(2^0+2^1+...+2^{2008}+2^{2009}\right)\)
\(2^{2010}-M=2^{2010}-1\)
\(M=2^{2010}-2^{2010}+1\)
\(M=1\)
\(R=2^{2010}-\left[2^{2009}+2^{2008}+...+2^1+2^0\right]\)
\(2^{2010}-R=2^0+2^1+...+2^{2008}+2^{2009}\)
\(2^{2011}-2R=2^1+2^2+...+2^{2009}+2^{2010}\)
\(\left(2^{2011}-2R\right)-\left(2^{2010}-R\right)=2^{2010}-1\)
\(2^{2010}-R=2^{2010}-1\)
\(R=2^{2010}-2^{2010}+1=0+1=1\)
\(N=2^{2009}+2^{2008}+...+2+1\)
\(\Leftrightarrow2N=2^{2010}+2^{2009}+...+2^2+2\)
=>\(N=2^{2010}-1\)
\(M=2^{2010}-2^{2010}+1=1\)