Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta để ý : x2 – 1 = (x – 1)(x + 1)
Do đó ta cần chia cả tử và mẫu của phân thức thứ nhất cho x – 1.
Mà ta có :
x5 – 1 = x5 – x4 + x4 – x3 + x3 – x2 + x2 – x + x – 1
= x4(x – 1) + x3(x – 1) + x2(x – 1) + x(x – 1) + (x – 1)
= (x – 1)(x4 + x3 + x2 + x + 1)
Do đó :
Vậy đa thức cần điền là x4 + x3 + x2 + x + 1.
Ta có: x - x 2 = x 1 - x
(Tử thức của phân thức bên phải bằng tử thức của phân thức bên trái chia cho (1 – x).
Do đó ta chia cả tử và mẫu của phân thức bên trái cho 1 – x thì thu được phân thức bên phải.)
Vậy đa thức cần điền là -5x – 5.
3 y - x 2 = 3 . x - y 2 = x - y . 3 x - y
(Mẫu thức của phân thức bên trái bằng mẫu thức của phân thức bên phải chia cho 3(x – y)
Do đó ta chia cả tử và mẫu của phân thức bên phải cho 3(x – y) để thu được phân thức bên trái)
Vậy đa thức cần điền là x.
Gọi \(P\) là đa thức cần tìm.
Ta có:
\(\frac{x^5-1}{x^2-1}=\frac{\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x^4+x^3+x^2+x+1}{x+1}\)
Vậy, \(P=x^4+x^3+x^2+x+1\)
3 x 3 + 24 x = 3 x . x 2 + 8
(Tử thức của phân thức bên phải bằng tử thức của phân thức bên trái nhân với 3x.
Do đó ta nhân cả tử và mẫu của phân thức bên trái với 3x thì thu được phân thức bên phải)
Vậy đa thức cần điền là 6 x 2 - 3 x
Gọi phân thức cần tìm là \(\dfrac{a}{b}\)
Theo đề bài ta có :
\(\dfrac{x}{x+1}:\dfrac{x+2}{x+1}:\dfrac{x+3}{x+2}:\dfrac{x+4}{x+3}:\dfrac{x+5}{x+4}:\dfrac{a}{b}=1\)
\(\Leftrightarrow\dfrac{x}{x+1}\cdot\dfrac{x+1}{x+2}\cdot\dfrac{x+2}{x+3}\cdot\dfrac{x+3}{x+4}\cdot\dfrac{x+4}{x+5}\cdot\dfrac{b}{a}=1\)
\(\Leftrightarrow\dfrac{x}{x+5}\cdot\dfrac{b}{a}=1\)
\(\Rightarrow\dfrac{b}{a}=\dfrac{x+5}{x}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{x}{x+5}\)
Vậy phân thức cần tìm là \(\dfrac{x}{x+5}\)
\(\dfrac{x}{x+1}:\dfrac{x+2}{x+3}:\dfrac{x+3}{x+4}:\dfrac{x+4}{x+5}:\dfrac{x+5}{x+6}=\dfrac{x}{x+6}\)
tính chất quan trọng phần thức với
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\Rightarrow c=\dfrac{ad}{b}\)áp vào
\(\dfrac{x^5-1}{x^2-1}=\dfrac{A}{x+1}\Rightarrow A=\dfrac{\left(x^5-1\right)\left(x+1\right)}{x^2-1}\) {x khác +-1}
\(A=\dfrac{\left(x^5-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left[\left(x-1\right)\left(x^4+x^3+x^2+x+1\right)\right]\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\left(x^4+x^3+x^2+x+1\right)\)
Vậy đa thức cần điền là
\(A=\left(x^4+x^3+x^2+x+1\right)\)
Vế phải chứng tỏ đã chia mẫu của vế trái cho x - 1 ( vì x2 – 1 = (x - 1)(x + 1)
Vậy phải chia tử của vế trái x5 – 1 cho x - 1
Vậy phải điền vào chỗ trống : x4 + x3 + x2 + x + 1