Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi cạnh còn lại là a(Điều kiện: \(a\in Z^+\))
Áp dụng bất đẳng thức tam giác, ta có: \(5-2< a< 5+2\)
\(\Leftrightarrow3< a< 7\)
\(\Leftrightarrow a\in\left\{4;5;6\right\}\)
mà a là số lẻ
nên a=5
Vậy: Độ dài cạnh còn lại của tam giác là 5cm
Tam giác đó là tam giác cân
a) Áp dụng Bđt tam giác, ta được:
7-2<a<7+2
\(\Leftrightarrow5< a< 9\)
hay \(a\in\left\{6;7;8\right\}\)
b) Trường hợp 1: Độ dài cạnh bên còn lại là 1cm
=> Trái với BĐT tam giác vì 1cm+1cm<4cm
Trường hợp 2: Độ dài cạnh bên còn lại là 4cm
=> Đúng với BĐT tam giác vì 4cm+4cm>1cm; 4cm+1cm>5cm
Chu vi tam giác là:
4cm+4cm+1cm=9(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+c-b}{2+5-4}=\dfrac{20}{3}\)
Do đó: a=40/3; b=80/3; c=100/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=4\)
Do đó: a=12; b=16; c=20
Xét ΔOPQ có OP-PQ<OQ<OP+PQ
=>5<OQ<7
=>OQ=6(cm)
=>ΔOPQ cân tại O
Theo bất đẳng thức tam giác ABC ta có:
AC – BC < AB < AC + BC
Theo độ dài BC = 1cm, AC = 7cm
7 – 1 < AB < 7 + 1
6 < AB < 8 (1)
Vì độ dài AB là một số nguyên thỏa mãn (1) nên AB = 7cm
Do đó ∆ ABC cân tại A vì AB = AC = 7cm
Theo định lí tam giác thì tổng hai cạnh bất kì luôn lớn hơn cạnh còn lại
Vậy cạnh còn lại dài 7 cm
Chu vi hình tam giác là
1 + 7 + 7 = 15 ( cm )
Đáp số : 15 cm
Gọi độ dài cạnh còn lại là a(Điều kiện: \(a\in Z^+\))
Áp dụng bất đẳng thức tam giác, ta có: \(4-1< a< 4+1\)
\(\Leftrightarrow3< a< 5\)
hay a=4
Vậy: Độ dài cạnh còn lại là 4cm
4-1>a>1+4 => 3>a>5 => a= 4. Vậy độ dài còn lại của cạnh bằng 4