Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính bằng công thức Heron khi biết tổng 3 canh a+b+c=40; p=20
Ở đây tam giác vuông có thể tính khác:
a^2+b^2=17^2
a+b=23<=> a^2+a^2+2ab=23^2
=> \(2ab=23^2-17^2=\left(23-17\right)\left(23+17\right)=6.40\)
\(\Rightarrow\frac{ab}{2}=\frac{6.40}{2.2}=6.10=60\)
ab/2 chính là diện tích tam giác cần tìm
Hạ đường cao AH.
△ABC cân tại A có: AH là đường cao nên AH cũng là trung tuyến.
\(\Rightarrow\)H là trung điểm BC.
△ABH vuông tại H có: \(AH^2+BH^2=AB^2\)(định lí Py-ta-go)
\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{17^2-\left(\dfrac{30}{2}\right)^2}=8\left(cm\right)\)
△ABC có: M là trung điểm AB, N là trung điểm AC.
\(\Rightarrow\)MN là đường trung bình của △ABC nên \(MN=\dfrac{BC}{2}=\dfrac{30}{2}=15\left(cm\right)\)
và MN//BC.
Tứ giác MNPQ có: MN//BC, \(\widehat{MQP}=\widehat{MPQ}=90^0\)
\(\Rightarrow\)MNPQ là hình chữ nhật nên MQ//AH.
△ABH có: M là trung điểm AB, MQ//AH.
\(\Rightarrow\)Q là trung điểm BH nên MQ là đường trung bình của △ABH.
\(\Rightarrow MQ=\dfrac{AH}{2}=\dfrac{8}{2}=4\left(cm\right)\)
\(S_{MNPQ}=MQ.MN=8.15=120\left(cm\right)\)
A B C Ta có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3AC}{4}=0,75.AC\)
\(\Delta ABC\left(\widehat{A}=90^o\right)\)có:
\(AB^2+AC^2=BC^2\left(Pytago\right)\)
\(\Leftrightarrow\left(0,75.AC\right)^2+AC^2=30^2\)
\(\Leftrightarrow0,5625AC^2+AC^2=900\)
\(\Leftrightarrow1,5625AC^2=900\)
\(\Leftrightarrow AC^2=576\Leftrightarrow AC=24\)(cm)
\(\Rightarrow AB=0,75.AC=0,75.24=18\)(cm)
\(S_{ABC}=\frac{AB.AC}{2}=\frac{18.24}{2}=216\left(cm^2\right)\)
a: Xét ΔABC có
P là trung điểm của AC
N là trung điểm của BC
Do đó: PN là đường trung bình của ΔBAC
Suy ra: PN//AB và \(PN=\dfrac{AB}{2}\)
mà M\(\in\)AB và \(AM=\dfrac{AB}{2}\)
nên PN//AM và PN=AM
Xét tứ giác AMNP có
PN//AM
PN=AM
Do đó: AMNP là hình bình hành
mà \(\widehat{PAM}=90^0\)
nên AMNP là hình chữ nhật
a: Xét ΔCAB có CP/CA=CN/CB
nên PN//AB và PN=AB/2
=>PN//AM và PN=AM
=>AMNP là hình bình hành
mà góc PAM=90 độ
nên AMNP là hình chữ nhật
b: \(AC=\sqrt{10^2-8^2}=6\left(cm\right)\)
AH=6*8/10=4,8cm
cau b)
ta có tgiac abc vuông tại a(gthiet)
theo định lí pi ta go ta có:
BC^2=AC^2+AB^2=81+144=225
suy ra BC=15
*BD=?
ta có AD la p/giac (giả thiết)
suy ra BD/DC=AB/AC (tính chất đương phân giác)
suy ra BD/BD+DC=9/9+12=3/7
suy ra BD/BC=3/7
suy ra BD=15.3/7=45/7
DC=BC-BD=15-45/7=60/7
*Câu c)............
nếu vuông tại A thì:
ta có : AB2+AC2=(AB+AC)2 - 2.AB.AC
=>2AB.AC=232-172
hay 2AB.AC=529-289=240
=>AB.AC=12O
=> DIỆN TÍCH TAM GIÁC ABC =1/2.AB.AC
= 1/2.12O=60
VẬY DIỆN TÍCH TAM GIÁC ABC LÀ 60 CM
ABC vuông tại đâu bạn phải nói rõ người ta mới giải được chứ