K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

a, áp dụng hệ thức lượng ta có CB.CH=CK^2 

                                            VÀ CA.CI=CK^2

TỪ đó suy ra đpcm cùng = quá CK ^2

b , DỄ DÀNG CM đc tứ giác IKCH là hcn suy ra IK=CH  ; KH=IC  áp dụng hệ thức lượng cuối cùng trong tam giác vg IKH  Có \(\frac{1}{KM^2}=\frac{1}{IK^2}+\frac{1}{KH^2}\)<=> \(\frac{1}{KM^2}=\frac{1}{CH^2}+\frac{1}{CI^2}\)

11 tháng 7 2017

Cảm ơn bạn lê thị bích ngọc đã giúp đỡ mình Nhưng còn ý d) bạn chưa làm. Đây là câu trả lời cho ý d) của mình nhé ^-^

d) Áp dụng hệ thức lượng vào \(\Delta ABC\) vuông tại C ta có :  \(AC^2=AK.AB\)

                                                                                          \(CB^2=BK.AB\)

\(\Rightarrow\frac{AC^2}{BC^2}=\frac{AK.AB}{BK.AB}=\frac{AK}{BK}\)

\(\Rightarrow\frac{AC^4}{BC4}=\frac{AK^2}{BK^2}\) (1)

Mặt khác , áp dụng hệ thức lượng vào \(\Delta AKC\)  vuông tại K  ta có: \(AK^2=AI.AC\) (2)

                                                   vào \(\Delta BKC\)  vuông tại K  ta có  \(KB^2=BH.BC\)  (3)

Từ (1) (2) (3) \(\Rightarrow\frac{AC^4}{BC^4}=\frac{AI.AC}{BH.BC}\Rightarrow\frac{AC^3}{CB^3}=\frac{AI}{BH}\)

a: ΔBCA vuông tại C

=>BC^2+CA^2=BA^2

=>BC^2=10^2-8^2=36

=>BC=6cm

Xét ΔBAC vuông tại C có CK là đường cao

nên CK*AB=CA*CB; AK*AB=AC^2; BK*BA=BC^2

=>CK=4,8cm; AK=8^2/10=6,4cm; BK=6^2/10=3,6cm

b: Xét tứ giác CHKI có

góc CHK=góc CIK=góc HCI=90 độ

=>CHKI là hình chữ nhật

c: ΔCKA vuông tại K có KI là đường cao

nên CI*CA=CK^2

ΔCKB vuông tại K có KH là đường cao

nên CH*CB=CK^2

=>CI*CA+CH*CB=2*CK^2

22 tháng 8 2021

a) Ta có tứ giác AIMJ là hcn=> AIMJ nội tiếp đường tròn đường kính AM,  IJ

Vì N đối xứng với M qua IJ => góc JNI = góc JMI = 90o ha N thuộc đường tròn đường kính AM và IJ => góc ANM = 90o 

mà I thuộc trung trực MN => tam giác MIC vuông cân tại I =>  I thuộc trung trực MC

=> I là tâm đường tròn ngoại tiếp tam giác MNC

=> góc MNC =1/2 góc MIC = 450 

=> góc ABC + góc ANC = 45+90+45=1800

Hay tứ giác ABCN nội tiếp đường tròn (T) (ĐPCM)

22 tháng 8 2021

b)CM: 1/PM<1/PB+1/PC ?

Ta có: tam giác MPC đồng dạng tam giác MBA => PM/MB=PC/BA => PM/PC=MB/BA (1)

TAM GIÁC MBP đồng dạng tam giác MAC => PM/MC=PB/CA=> PM/PB=MC/AC      (2)

Cộng vế theo về của (1) và (2) ta có:

PM/PC+PM/PB=MB/BC+MC/AC=MB/BA+MC/BA=AC/BA>1 => ĐPCM

c) Áp dụng hệ thức giữa cạnh và đường cao ta có:

DH2=DK.DC => DA2=DK.DC

=> DA/DC=DK/DA => TAM GIÁC DKA đồng dạng tam giác DAC => góc AKD =DAC =45o

=> góc ABH+ góc AKH = 45+45+90=1800=> TỨ GIÁC ABHK nội tiếp

=> Góc AKB =AHB =90 = GÓC HKC 

Mà góc ABK =AHK=KCH => đpcm

24 tháng 8 2023

Xét `ΔCKB` vuông tại K, đường cao KH có: `CK^2=CB.CH` (1)

Xét `ΔCKA` vuông tại K, đường cao KI có: `CK^2=CA.CI` (2)

Từ (1), (2) suy ra: `CB.CH=CA.CI` (đpcm)

 

a: Xét ΔCKA vuông tại K có KI là đường cao ứng với cạnh huyền AC

nên \(CI\cdot CA=CK^2\left(1\right)\)

Xét ΔCKB vuông tại K có KH là đường cao ứng với cạnh huyền BC

nên \(CH\cdot CB=CK^2\left(2\right)\)

Từ (1) và (2) suy ra \(CI\cdot CA=CH\cdot CB\)