Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Giải: Gọi hai số lẻ liên tiếp là 2n + 1 và 2n + 3 (n \(\in\) N).
Ta đặt ƯCLN (2n + 1, 2n + 3) = d.
Suy ra 2n + 1chia hết cho d; 2n + 3 chia hết cho d.
Vậy (2n + 3) – ( 2n + 1) chia hết cho d
Hay 2 chia hết cho d, suy ra d \(\in\) { 1 ; 2 }. Nhưng d \(\ne\) 2 vì d là ước của các số lẻ. Vậy d = 1, điều đó chứng tỏ 2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau.
a)Ta có: n+1 và 3n +4
Gọi d là ƯCLN ( n+1;3n+4)
Ta có n+1 chia hết cho d và 3n+4 cũng chia hết cho d.
(3n+4)-(3n+3) = 1 chia hết cho d
Vậy hai số n+1 và 3n+4 là hai số nguyên rố cùng nhau.
b) Ta có: 2n+5 và 3n+7
Gọi d là ƯCLN(2n+5;3n+7)
Ta có 2n+5 chia hết cho d và 3n+7 cũng chia hết cho d
( 6n+15) - (6n +14) = 1 chia hết cho d
Vậy hai số 2n+5 và 3n+7 là hai số nguyên tố cùng nhau.
a) 2 số có dạng: 2k +1 ; 2k + 3
UC(2k + 1 ; 2k + 3) = UC(1;3) = 1
=> dpcm
b) Gọi UCLN(2n + 5 ;3n + 7) = d
2n + 5 chia hết cho d
=> 6n + 15 chia hết cho d
3n + 7 chia hết cho d
=> 6n + 14 chia hết cho d
Mà UCLN(6n + 14 ; 6n + 15) = 1 <=> d = 1
=> DPCM
a, Ta phải chứng minh ƯCLN(2n+1 ; 2n+3)=1
đặt : ƯCLN(2n+1;2n+3)=d
Suy ra : 2n+1 chia hết cho d
2n+3 chia hết cho d
Nên (2n+3) - (2n+1) chia hết cho d Hay 2 chia hết cho d
=> d thuộc Ư(2)={1;2}
loại d=2 (vì d khác 2)
=> d = 1
Vậy 2 số tự nhiên lẻ liên tiếp nhau là 2 số nguyên tố cùng nhau
b, Gọi ƯCLN ( 2n+5 ; 3n+7)=p
Suy ra : 2n+5 chia hết cho p Hay 3.(2n+5)=6n+15 chia hết cho p
3n+7 chia hết cho p Hay 2.(3n+7)=6n+14 chia hết cho p
Nên : (6n+15) - (6n+14) chia hết cho p hay 1chia hết cho p
=>p= 1
vậỷ 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
a) Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi d = ƯCLN(2n+5; 3n+7) (d thuộc N*)
=> 2n + 5 chia hết cho d; 3n + 7 chia hết cho d
=> 3.(2n + 5) chia hết cho d; 2.(3n + 7) chia hết cho d
=> 6n + 15 chia hết cho d; 6n + 14 chia hết cho d
=> (6n + 15) - (6n + 14) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n+5; 3n+7) = 1
=> 2n + 5 và 3n + 7 là 2 số nguyên tố cùng nhau (đpcm)
Câu b lm tương tự
Gọi 2 số lẻ liên tiếp đó là : \(n;n+2(n\inℕ^∗;n⋮̸2)\)
Gọi d là ƯCLN ( n ; n + 2 )
\(\Rightarrow n⋮d;n+2⋮d\)
\(\Rightarrow\left(n+2\right)-n=2⋮d\)
\(\Rightarrow d\inƯ\left(2\right)=\left\{1;2\right\}\)
Vì d là ước của 1 số lẻ nên d khác 2
\(\Rightarrow d=1\)
Do đó 2 số lẻ liên tiếp nguyên tố cùng nhau.
\(2n+5⋮d;3n+7⋮d\)
\(\Rightarrow3\left(2n+5\right)⋮d;2\left(3n+7\right)⋮d\)
\(\Rightarrow6n+15⋮d;6n+14⋮d\)
\(\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)
\(\Rightarrow\left(6n-6n\right)+\left(15-14\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow\)
gọi ƯCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau
mk chỉ biết làm câu b mong bạn thông cảm
Ta có:
2 số lẻ liên tiếp là
2k+1 và 2k+3
Đặt số d
Ta có:
2k+3 CHIA HẾT CHO d
2k+1 CHIA HẾT CHO d
Ta có
2k+3-(2k+1) CHIA HẾT CHO d
=>2 CHIA HẾT CHO d
nhưng 2k+3 là số lẻ
=>2k+3 KHÔNG CHIA HẾT CHO 2
Vậy d=1
=> 2 số lẻ liên tiếp luôn luôn là 2 SỐ NGUYÊN TỐ CÙNG NHAU
b, Đặt ƯCLN của 2n+3;3n+7 là D
Ta có:
2n+5 CHIA HẾT CHO D
3n+7 CHIA HẾT CHO D
=>
3(2n+5)-2(3n+7) CHIA HẾT CHO D
=>1 CHIA HẾT CHO D
=> D THUỘC ƯCLN LÀ 1
=> 2n+5 và 3n+7 luôn luôn là 2 SỐ NGUYÊN TỐ CÙNG NHAU
a, gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ
a ,Gọi 2 số lẻ là 2k+1 ; 2k+2
Gọi Ư CNN 2k+1 và 2k+3 là d
ta có :
2k+3-2k+1=2
d thuộc ƯC (2) ={1;2}
Mà d không thể bằng 2 vì 2k+1 và 2k+3 là số lẻ
Vậy d = 1
b,Gọi ƯCNN 2n+5và 3n+7 là d
ta có :
3 .( 2n + 5 )chia hết cho d. =6n+15 chia hết cho d
2.( 3n +7 )chia hết cho d.= 6n+14chia hết cho d
(6n + 15 ) - ( 6n + 14 ) = 6n +15 - 6n -14 =1
d thuộc ƯC (1 ) ={1}
Vậy 2n + 5 và 3n+ 7là 2 số nguyên tố cùng nhau
Gọi d là ƯCLN (2n + 5 ; 3n + 7)
Ta có: 2n + 5 chia hết cho d ; 3n + 7 chia hết cho d
=> 3(2n + 5) chia hết cho d ; 2(3n + 7) chia hết cho d
=> 3(2n + 5) - 2(3n + 7) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
2n + 5 và 3n + 7 có ƯCLN là 1, vậy 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau.
Gọi d là ƯCLN (2n + 5 ; 3n + 7)
Ta có: 2n + 5 chia hết cho d ; 3n + 7 chia hết cho d
=> 3(2n + 5) chia hết cho d ; 2(3n + 7) chia hết cho d
=> 3(2n + 5) - 2(3n + 7) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
2n + 5 và 3n + 7 có ƯCLN là 1, vậy 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau.