K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
25 tháng 5 2021

a) Đặt \(d=\left(21n+3,6n+4\right)\).

\(\Rightarrow\hept{\begin{cases}21n+3⋮d\\6n+4⋮d\end{cases}}\Rightarrow7\left(6n+4\right)-2\left(21n+3\right)=22⋮d\)

\(\Rightarrow d\in\left\{22,11,2,1\right\}\).

Ta sẽ tìm điều kiện để \(\hept{\begin{cases}21n+3⋮2\\6n+4⋮2\end{cases}}\)và \(\hept{\begin{cases}21n+3⋮11\\6n+4⋮11\end{cases}}\)

\(\hept{\begin{cases}21n+3⋮2\\6n+4⋮2\end{cases}}\)suy ra \(n\)lẻ. 

\(\hept{\begin{cases}21n+3⋮11\\6n+4⋮11\end{cases}}\)suy ra \(21n+3=22n-n+3⋮11\Leftrightarrow n+8⋮11\Leftrightarrow n=11k-8\left(k\inℤ\right)\).

Với \(n=11k-8\)thì \(6n+4=66k-44⋮11\).

Vậy \(A\)rút gọn được khi \(n\)lẻ hoặc \(n=11k-8\left(k\inℤ\right)\).

b) \(\frac{21n+3}{6n+4}\inℤ\Rightarrow\frac{2\left(21n+3\right)}{6n+4}=\frac{42n+6}{6n+4}=7-\frac{22}{6n+4}\inℤ\Leftrightarrow\frac{22}{6n+4}\inℤ\)

\(\Leftrightarrow6n+4\inƯ\left(22\right)=\left\{-22,-11,-2,-1,1,2,11,22\right\}\)

mà \(n\inℤ\)nên \(n\in\left\{-1,3\right\}\)

Thử lại đều thỏa mãn. 

26 tháng 4 2020

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

3 tháng 5 2017

b) Ta có 

\(\frac{6n+3}{3n+6}=\frac{6n+12-9}{3n+6}=\frac{2.\left(3n+6\right)-9}{3n+6}=2-\frac{9}{3n+6}\)

3 n + 6 là ước nguyên của 9

\(3n+6=1\Rightarrow n=-\frac{5}{3}\)(loại)

\(3n+6=3\Rightarrow n=-1\)( chọn )

\(3n+6=9\Rightarrow n=1\)( chọn )

\(3n+6=-1\Rightarrow n=-\frac{7}{3}\)( loại )

\(3n+6=-3\Rightarrow n=-3\)( chọn )

\(3n+6=-9\Rightarrow n=-5\)( chọn )

KL : \(n\in\){ 1; -1; -3; -5 }

Ai thấy đúng thì ủng hộ nha!!

25 tháng 3 2018

Trả lời

a)\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)+\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a-1}\)

b) Gọi d là ƯCLN (\(a^2+a-1;a^2+a+1\))

\(\Rightarrow\hept{\begin{cases}a^2+a+1⋮d\\a^2+a-1⋮d\end{cases}}\)

\(\Rightarrow\left(a^2+a+1\right)-\left(a^2+a-1\right)⋮d\)

\(\Rightarrow2⋮d\) 

\(\Rightarrow\)d=1 hoặc d=2

Mà a(a+1)-1. Với là số nguyên ta có a(a+1) là tích 2 nguyên số liên tiếp

\(\Rightarrow a\left(a+1\right)⋮2\)\(\Rightarrow a\left(a+1\right)-1\)lẻ 

\(\Rightarrow d\ne2\)

\(\RightarrowĐPCM\)

a)
A =
a
3
+ a
2
+ a
2
+ a + a + 1
a
3 + a
2
+ a
2 − 1 =
a
2
a + 1 + a a + 1 + a + 1
a
2
a + 1 + a + 1 a + 1 =
a + 1 a
2
+ a + 1
a + 1 a
2
+ a − 1 =
a
2
+ a − 1
a
2
+ a − 1
b) gọi d = ƯCLN (a2
 + a - 1; a2
 + a +1 )
=> a2
 + a -  1 chia hết cho d
a
2
 + a +1 chia hết cho d
=> (a2
 + a + 1) - (a2
 + a - 1) chia hết cho d => 2 chia hết cho d 
=> d = 1 hoặc d = 2
Nhận xét: a2
 + a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2
=> a(a+1) - 1 lẻ => a2
 + a - 1 lẻ
=> d không thể = 2
Vậy d = 1 => đpcm

7 tháng 3 2019

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(A=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

\(A=\frac{a^2+a-1}{a^2+a+1}\)\(\left(a\ne-1\right)\)

b)Gọi d là ước chung lớn nhất của a2 +a-1 và a2+a+1

Vì a2 +a-1=a(a+1)-1 là lẻ nên d cũng là số lẻ.

Tự làm tiếp nhé,đến đây chắc bạn làm đc chứ,hok tốt!

7 tháng 3 2019

\(A=\frac{a^2+a-1}{a^2+a+1}\)

Vì: \(a^2+a=a\left(a+1\right)\)

a là số nguyên 

=> a, a+1 là 2 số nguyên liên tiếp 

=> a.(a+1) là số chẵn

=> \(a^2+a+1,a^2+a-1\)là 2 số nguyên lẻ liên tiếp

Mà 2 số lẻ liên tiếp nguyên tố cùng nhau 

(chúng minh: (2k+1, 2k+3)=d

=> 2k+1 chia hết cho d, 2k+3 chia  hết cho d

=> 2k+3-(2k+1)=2 chia hết cho d

=> d=\(2\)hoặc d=\(1\)

Nếu d=\(2\)=> 2k+1 chia hêt cho 2 vô lí

=> d=\(1\))

=> (\(a^2+a+1,a^2+a-1\))=1

Vậy A là phân số tối giản