Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ý bạn là dãy số này: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=u_n+\left(\dfrac{1}{2}\right)^n\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\u_{n+1}+2.\left(\dfrac{1}{2}\right)^{n+1}=u_n+2.\left(\dfrac{1}{2}\right)^n\end{matrix}\right.\)
Đặt \(v_n=u_n+2.\left(\dfrac{1}{2}\right)^n\Rightarrow\left\{{}\begin{matrix}v_1=u_1+2\left(\dfrac{1}{2}\right)=2\\v_{n+1}=v_n\end{matrix}\right.\)
\(\Rightarrow v_{n+1}=v_n=v_{n-1}=...=v_1=1\)
\(\Rightarrow v_n=v_1=1\Rightarrow u_n+2\left(\dfrac{1}{2}\right)^n=1\)
\(\Rightarrow u_n=1-2\left(\dfrac{1}{2}\right)^n\)
\(\Rightarrow lim\left(u_n\right)=lim\left[1-2\left(\dfrac{1}{2}\right)^n\right]=1-0=1\)
a/
\(u_n=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(u_n=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(n-2\right)n}+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)
\(u_n=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)
\(u_n=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(\Rightarrow lim\left(u_n\right)=lim\left(\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right)=\dfrac{1}{2}.\dfrac{3}{2}=\dfrac{3}{4}\)
b/ \(u_n=\dfrac{1}{1^2+3}+\dfrac{1}{2^2+6}+...+\dfrac{1}{n^2+3n}=\dfrac{1}{1.4}+\dfrac{1}{2.5}+...+\dfrac{1}{n\left(n+3\right)}\)
\(u_n=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{3}-\dfrac{1}{6}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\right)\)
\(u_n=\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{n+1}-\dfrac{1}{n+2}-\dfrac{1}{n+3}\right)\)
\(\Rightarrow lim\left(u_n\right)=lim\left(\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{n+1}-\dfrac{1}{n+2}-\dfrac{1}{n+3}\right)\right)\)
\(\Rightarrow lim\left(u_n\right)=\dfrac{1}{3}\left(1+\dfrac{1}{2}+\dfrac{1}{3}\right)=\dfrac{11}{18}\)
S= u1.u1 + u2.u2+...+un.un
S = u1.(u2 - d) + u2.(u3 - d)+...+un(un+1 - d)
S = u1.u2 + u2.u3 +...+un.un+1-d(u1+u2+...+un)
Đặt A = u2.u3 + u3.u4+...+un.un+1
3d.A = u2.u3.(u4-u1) + u3.u4.(u5-u2)+...+un.un+1.(un+2-un-1)
3d.A = u2.u3.u4 - u1.u2.u3 + u3.u4.u5 - u2.u3.u4+...+un.un+1.un+2 - un-1.un.un+1
3d.A = un.un+1.un+2 - u1.u2.u3
3d.A = (u1 + d.n - d)(u1 + d.n)(u1 + d.n + d) - u1.(u1+d).(u1+2.d)
A = [(u1 + d.n - d)(u1 + d.n)(u1 + d.n + d) - u1.(u1+d).(u1+2.d)]/(3.d)
S = A + u1.(u1 + d) + d[2.u1+(n-1).d].n/2
Để xét dãy tăng, dãy giảm, bạn tính \(u_{n+1}-u_n\).
- Nếu \(u_{n+1}-u_n>0\) với \(n\) là số tự nhiên thì dãy là dãy tăng.
- Nếu \(u_{n+1}-u_n< 0\) với \(n\) là số tự nhiên thì dãy là dãy giảm.
Áp dụng:
A: \(u_{n+1}=\dfrac{\left(n+1\right)}{\left(n+1\right)+1}=\dfrac{n+1}{n+2}\)
\(n_{n+1}-u_n=\dfrac{n+1}{n+2}-\dfrac{n}{n+1}=\dfrac{\left(n+1\right)^2-n\left(n+2\right)}{\left(n+2\right)\left(n+1\right)}=\dfrac{1}{\left(n+2\right)\left(n+1\right)}>0\)
với \(n\) là số tự nhiên.
Do đó \(u_n\) là dãy tăng.
Bạn làm tương tự với các dãy còn lại.
B: Dãy giảm.
C: Dãy không tăng không giảm.
D: Dãy tăng.