K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2016

a chia cho 18 có thương bằng số dư nên a=18x+x=19x(1), x < 18, x tự nhiên.
(1), (2) suy ra: 19x−72y=69 (*)
Từ (*) suy ra x chia hết cho 3 và x lẻ. Kết hợp x < 18 ta được: x = 3, 9, 15.
Xét từng trường hợp được x = 15, y = 3. Khi đó a = 285. 

16 tháng 6 2016

a chia 72 dư 69 nên a = 72m + 69 = 18*4m + 54 +15 = 18*4m + 18*3 + 15 = 18*(4m+3) +15

Vậy a chia 18 dư 15

Mà theo đề bài thì a chia 18 được thương và dư bằng nhau nên thương = 15

Vậy a = 15*18 + 15 = 285.

14 tháng 11 2017

S=1 +2+..+n 
S=n+(n-1)+..+2+1 
=> 2S = n(n+1) 
=> S=n(n+1)/2 
=> aaa =n(n+1)/2 
=> 2aaa =n(n+1) 

Mặt khác aaa =a*111= a*3*37 

=> n(n+1) =6a*37 
Vế trái là tích 2 số tự nhiên liên tiếp 
=> a*6 =36 
=> a=6 
(nêu a*6 =38 loại) 

Vậy n=36, aaa=666           Và a=6

14 tháng 11 2017

S là j zậy lê văn hải

8 tháng 2 2020

a) n + 7 = n + 2 + 5 chia hết cho n + 2

=> 5 chia hết cho n + 2 thì n+7 chia hết cho n+2

=> n+2 thuộc tập cộng trừ 1, cộng trừ 5

kẻ bảng => n = -1; -3; 3; -7

b) n+1 là bội của n-5

=> n+1 chia hết cho n-5

=> n-5 + 6 chia hết cho n-5

=> Để n+1 chia hết cho n-5 thì 6 chia hết cho n-5

=> n-5 thuộc tập cộng trừ 1; 2; 3; 6 

kẻ bảng => n = 6; 4; 7; 3; 8; 2; 11; -1

8 tháng 2 2020

a)Ta có:  (n+7)\(⋮\)(n+2)

    \(\Rightarrow\) (n+2+5)\(⋮\)(n+2)

    Mà: (n+2)\(⋮\) (n+2)

    \(\Rightarrow\) 5\(⋮\)(n+2)

     \(\Rightarrow\) n+2\(\in\) Ư(5)={1;-1;5;-5}

     \(\Rightarrow\) n\(\in\){-1;-3;3;-7}

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

25 tháng 11 2015

1, Vì a chia 3 dư 2; chia 7 dư 6

=> a+1 chia hết cho 3 và 7

Mà ƯCLN(3;7)=1

=> a+1 chia hết cho 3.7=21

=> a+1 có dạng 21k (k thuộc N*)

=> a = 21k-1= 21.(k-1)+20 => a chia 21 dư 20

9 tháng 6 2019

bn tham khảo

 https://olm.vn/hoi-dap/detail/22224476315.htm

hok tốt

nha bn

 Từ n+4 chia hết cho n+1 
Ta có : n+4=(n+1) + 3
Thì ta có n + 1 +3 sẽ chia hết cho n+1
Suy ra 3 chia hết cho n+1
 n+1 sẽ thuộc ước của 3 
Ư(3) = ((1;3))
Suy ra n+1=1 hoặc n+1=3
+) n+1=1
   n     = 1-1
   n     = 0
+) n+1= 3
    n    = 3-1
    n    = 2

Suy ra n có thể bằng 0 hoặc 2
k cho mình nha

28 tháng 3 2016

Bạn hỏi câu nào mà cso ƯCLN hay tìm BCNN của 3 số abc hay là các dạng toán về tìm số dư của 1 lũy thừa cho số tự nhiên ( Các dạng toán liên quan đến casio thì mình giải cho 

18 tháng 10 2016

a) bn tự lm

b) n + 2 chia hết cho n2 + 1

=> n.(n + 2) chia hết cho n2 + 1

=> n2 + 2n chia hết cho n2 + 1

=> n2 + 1 + 2n - 1 chia hết cho n2 + 1

Do n2 + 1 chia hết cho n2 + 1 => 2n - 1 chia hết cho n2 + 1 (1)

Lại có: n + 2 chia hết cho n2 + 1 (theo đề bài)

=> 2.(n + 2) chia hết cho n2 + 1

=> 2n + 4 chia hết cho n2 + 1 (2)

Từ (1) và (2) => (2n + 4) - (2n - 1) chia hết cho n2 + 1

=> 2n + 4 - 2n + 1 chia hết cho n2 + 1

=> 5 chia hết cho n2 + 1

Mà \(n\in N\) nên \(n^2+1\ge1\)

\(\Rightarrow n^2+1\in\left\{1;5\right\}\)

\(\Rightarrow n^2\in\left\{0;4\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\)

Thử lại ta thấy trường hợp n = 2 không thỏa mãn

Vậy n = 0

c) bn tự lm

18 tháng 10 2016

đon giản wá