Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đo mỗi cạnh của tam giác lần lượt là x, y, z (đơn vị: m) (x, y, z \(\in\)N*)
Do mỗi cạnh của tam giác tỉ lệ với 4; 5; 8
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{8}\)
Chu vi hình tam giác là 34m
=> x + y + z = 34
Theo tính chất của dãy tỉ số bằng nhau.
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{8}=\frac{x+y+z}{4+5+8}=\frac{34}{17}=2\)
\(\frac{x}{4}=2\Rightarrow x=2.4=8\)
\(\frac{y}{5}=2\Rightarrow y=2.5=10\)
\(\frac{z}{8}=2\Rightarrow z=2.8=16\)
Vậy, độ dài mỗi cạnh của tam giác lần lượt là 8; 10; 16.
@Nghệ Mạt
#cua
Gọi các cạnh của tam giác lần lượt là x1, x2, x3
Theo đề bài ta có: \(\frac{x_1}{4}\), \(\frac{x_2}{5}\), \(\frac{x_3}{8}\)= \(\frac{34}{17}\)= \(2\)
Do đó:
x1 = 2.4 = 6
x2 = 2.5 = 10
x3 = 2.8 = 16
Độ dài của các cạnh lần lượt là 6, 10, 16
Câu 1: (2 điểm) Cho biểu thức:
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số sao cho
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm)
a. Cho a, b, n thuộc N*. Hãy so sánh
b. Cho . So sánh A và B.
Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
Câu 1: (2 điểm) Cho biểu thức:
a, Rút gọn biểu thức
b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.
Câu 2: (1 điểm)
Tìm tất cả các số tự nhiên có 3 chữ số sao cho
Câu 3: (2 điểm)
a. Tìm n để n2 + 2006 là một số chính phương
b. Cho n là số nguyên tố lớn hơn 3. Hỏi n2 + 2006 là số nguyên tố hay là hợp số.
Câu 4: (2 điểm)
a. Cho a, b, n thuộc N*. Hãy so sánh
b. Cho . So sánh A và B.
Câu 5: (2 điểm)
Cho 10 số tự nhiên bất kỳ: a1, a2, ....., a10. Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10.
Câu 6: (1 điểm)
Cho 2006 đường thẳng trong đó bất kì 2 đường thẳng nào cũng cắt nhau. Không có 3 đường thẳng nào đồng qui. Tính số giao điểm của chúng.
T.I.C.K nha
Để chứng tỏ x=-1 là một nghiệm của đa thức p(x), ta cần chứng minh rằng p(-1) = 0.
Thay x = -1 vào đa thức p(x), ta được:
p(-1)=(-1)^2 + a(-1) + b = 1 - a + b
Vì a - b = 1, nên ta có thể viết lại a = b + 1. Thay a = b + 1 vào biểu thức trên, ta được:
p(-1) =1- (b + 1) + b = 0
Vậy x = -1 là một nghiệm của đa thức p(x).
Để chứng tỏ x = -1 là một nghiệm của p(x), ta chỉ cần thay x = -1 vào đa thức p(x) và kiểm tra xem có bằng 0 hay không. Ta có:
p(-1) = (-1)^2 + a(-1) + b
= 1 - a + b
= 1 - (a - b) - b
= 1 - 1 - b
= -b
Do đó, nếu p(-1) = 0 thì x = -1 là một nghiệm của p(x). Điều này tương đương với b = 0. Vậy để x = -1 là một nghiệm của p(x), ta cần có điều kiện b = 0.
Ta có \(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}\)
Áp dụng dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{10}{-2}=-5\)
\(\Rightarrow x=3.\left(-5\right)=-15;y=\left(-5\right).5=-25\)
Vậy x = -15 ; y = -25
mik tra rui ko có Hoàng Thiên Phúc nak