Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\Delta ABO\sim\Delta A'B'O\Rightarrow\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\left(1\right)\)
Và \(\Delta OIF\sim\Delta A'B'F\Rightarrow\dfrac{OF}{A'F}=\dfrac{OI}{A'B'}\left(2\right)\)
\(\Rightarrow\dfrac{OF}{OF-OA'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{12}{12-OA'}=\dfrac{6}{OA'}\Rightarrow OA'=4\left(cm\right)\)
Ta có: \(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow A'B'=\dfrac{AB.OA}{OA'}=\dfrac{36.6}{4}=54\left(cm\right)\)
Vật ảnh cao 4cm và cách thấu kính 54cm
a) Bạn tự vẽ hình.
b) Hình minh họa :
Xét \(\Delta FA'B'\sim\Delta FOI\) có : \(\dfrac{A'B'}{OI}=\dfrac{A'F}{OF}\Leftrightarrow\dfrac{A'B'}{AB}=\dfrac{OF-OA'}{OF}\)
\(\Rightarrow\dfrac{h'}{3}=\dfrac{15-d'}{15}\left(1\right)\)
Xét \(\Delta OA'B'\sim\Delta OAB\) có : \(\dfrac{A'B'}{AB}=\dfrac{OB'}{OB}\Leftrightarrow\dfrac{h'}{3}=\dfrac{d'}{30}\left(2\right)\).
Từ (1) và (2), ta có hệ phương trình : \(\left\{{}\begin{matrix}\dfrac{h'}{3}=\dfrac{15-d'}{15}\\\dfrac{h'}{3}=\dfrac{d'}{30}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d'=10\left(cm\right)\\h'=1\left(cm\right)\end{matrix}\right.\).
Vậy : Ảnh A'B' cách thấu kính \(d'=10\left(cm\right)\) và cao \(h'=1\left(cm\right)\).
a. Dựng ảnh A'B'
b) d > f , ảnh lớn hơn và ngược chiều với vật
c)
Tóm tắt:
OF = 12cm
OA = 18cm
AB = 6cm
A'B' = ?
Giải:
Δ ABF ~ OIF
\(\Rightarrow\dfrac{AB}{OI}=\dfrac{AF}{OF}\Leftrightarrow\dfrac{AB}{A'B'}=\dfrac{OA-OF}{OF}\Leftrightarrow\dfrac{6}{A'B'}=\dfrac{18-12}{12}\)
=> A'B' = 12cm
a. Để vẽ ảnh của vật AB cho bởi thấu kính, ta sử dụng quy tắc chính của thấu kính phân kì:
Với vật đặt trước thấu kính, ta vẽ một tia đi qua đỉnh A của vật và tiếp tục đi thẳng qua thấu kính.Với vật đặt sau thấu kính, ta vẽ một tia đi từ đỉnh B của vật và tiếp tục đi thẳng qua thấu kính.b. Để xác định ảnh là ảnh thật hay ảnh ảo, ta sử dụng quy tắc sau:
Nếu ảnh xuất hiện ở cùng phía với vật (tức là nằm về phía mà tia đi từ vật đến thấu kính), thì ảnh là ảnh thật.Nếu ảnh xuất hiện ở phía ngược lại so với vật (tức là nằm về phía mà tia đi từ thấu kính đến mắt), thì ảnh là ảnh ảo.Trong trường hợp này, ta thấy ảnh xuất hiện ở cùng phía với vật, nên ảnh là ảnh thật.
c. Để tính khoảng cách giữa ảnh và thấu kính, ta sử dụng công thức:
1/f = 1/do + 1/di
Trong đó:
f là tiêu cự của thấu kínhdo là khoảng cách từ vật đến thấu kínhdi là khoảng cách từ ảnh đến thấu kínhThay các giá trị vào công thức, ta có:
1/20 = 1/30 + 1/di
=> di = 60 cm
Vậy, ảnh cách thấu kính 60 cm.
F F' O A B A' B'
ΔOAB∞ΔOA'B'
⇒\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{1}{A'B'}=\dfrac{24}{OA'}\) 1
ΔOFI∞ΔFA'B'
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{F'A'}\Rightarrow\dfrac{AB}{A'B'}=\dfrac{OF}{OF-OA}\)
⇔\(\dfrac{1}{A'B'}=\dfrac{12}{12-OA'}\) 2
Từ 1 và 2 ⇒ \(\dfrac{1}{OA'}=\dfrac{12}{12-OA'}\)
⇔1(12-OA') = 12. OA'
⇔12-12.OA' = 12.OA'
⇔-12.OA' - 12. OA' = -12
⇔-24.OA' = -3
⇔OA' = 0.125
Thay OA'= 0.125 vào 1
⇒\(\dfrac{1}{A'B'}=\dfrac{24}{-0.125}\Rightarrow\dfrac{1.0,125}{24}=\dfrac{1}{192}\)
a)
Tính chất:
d > f
Ảnh thật, ảnh lớn hơn vật và ngược chiều vật
b) Tóm tắt:
AB = 10cm
OA = 30cm
OF = OF' = 20cm
A'B' = ?
OA' = ?
Giải:
\(\Delta ABF\sim\Delta OIF\)
\(\Rightarrow\dfrac{AB}{OI}=\dfrac{AF}{OF}\Leftrightarrow\dfrac{AB}{A'B'}=\dfrac{OA-OF}{OF}\Leftrightarrow\dfrac{10}{A'B'}=\dfrac{30-20}{20}\)
=> A'B' = 20cm
\(\Delta OAB\sim\Delta O'AB\)
\(\Rightarrow\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow OA'=\dfrac{OA.A'B'}{AB}=\dfrac{30.20}{10}=60cm\)