\(^3\) - 5x\(^...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)

16 tháng 6 2020

\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)

Hệ số 3/5

\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)

Hệ số 4

Làm nốt b Quỳnh đag lm dở.

Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)

\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)

\(P\left(x\right)=x^2-2\)

Ta có : \(P\left(x\right)=x^2-2=0\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

20 tháng 4 2018

\(M\left(x\right)=P\left(x\right)+Q\left(x\right)=2,5x^6-4+2,5x^5-6x^3+2x^2\)-5x+\(3x-2,5x^6-x^2+5-2,5x^5+6x^3\)

=\(\left(2,5x^6-2,5x^6\right)\)+\(\left(2,5x^5-2,5x^5\right)\)\(\left(-6x^3+6x^3\right)\)+\(\left(2x^2-x^2\right)\)+\(\left(-5x+3x\right)\)+(-4+5)

= \(x^2-2x+1\)

17 tháng 3 2019

a) \(x^3-5x=0\Leftrightarrow x\left(x^2-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x\in\left\{\pm\sqrt{5}\right\}\end{matrix}\right.\)

b) \(x^2-3x+2=0\Leftrightarrow x^2-2x-x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

c) \(2x^2-4x-2=0\)

\(\Leftrightarrow2\left(x^2-2x-1\right)=0\)

\(\Leftrightarrow x^2-2x-1=0\)

\(\Leftrightarrow x^2-2x+1-2=0\)

\(\Leftrightarrow\left(x-1\right)^2=\left(\pm\sqrt{2}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}+1\\x=-\sqrt{2}+1\end{matrix}\right.\)

d) \(-3x^2-2x+5=0\)

\(\Leftrightarrow-3x^2+3x-5x+5=0\)

\(\Leftrightarrow-3x\left(x-1\right)-5\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-3x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-5}{3}\end{matrix}\right.\)

e) \(-4x^2-x+3=0\)

\(\Leftrightarrow-4x^2-4x+3x+3=0\)

\(\Leftrightarrow-4x\left(x+1\right)+3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(-4x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)

3 tháng 5 2017

Ôn tập toán 7

16 tháng 6 2017

1) \(A=2xy^2+3xy-xy^2+5xy^2+5xy+1\)

a, \(A=2xy^2+3xy-xy^2+5xy^2+5xy+1\)

= \(6xy^2+8xy+1\)

b, giá trị của biểu thức tại x = 1 và y = 2 là:

\(A=6.1.2^2+8.1.2+1=41\)

2) và 3) bạ vt khó hiểu wa

16 tháng 6 2017

2) đề bài này là tìm b.a.c á bn, ghi đề chưa rõ lắm nên tui cx pó tay

3)

a/ Có: \(4x+9=0\)

\(\Leftrightarrow4x=-9\Rightarrow x=-\dfrac{9}{4}\)

vậy.............

b/ Có: \(-5x+6=0\)

\(\Leftrightarrow-5x=-6\Rightarrow x=\dfrac{6}{5}\)

Vậy....................

c/ có: \(x^2-4=0\)

\(\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy ..................

d/ Có: \(9-x^2=0\)

\(\Leftrightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy.............

e/ Có: \(\left(y+2\right)\left(3-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\\3-y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-2\\y=3\end{matrix}\right.\)

Vậy...............

p/s: bài 3 này thuộc dạng cơ bản nên lần sau nhớ suy nghĩ trc khi đăng câu hỏi

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Bài 5:

a)

\(F=3x^3y+6x^2y^2+3xy^3=3xy(x^2+2xy+y^2)=3xy(x+y)^2\)

\(=3.\frac{1}{2}.\frac{-1}{3}(\frac{1}{2}+\frac{-1}{3})^2=\frac{-1}{72}\)

b)

\(G=x^2y^2+xy+x^3+y^3=(-1)^2(-3)^2+(-1)(-3)+(-1)^3+(-3)^3\)

\(=9+3-1-27=-18\)

AH
Akai Haruma
Giáo viên
27 tháng 5 2019

Bài 7:

a)

\(x^2+2x=0\Leftrightarrow x(x+2)=0\Rightarrow \left[\begin{matrix} x=0\\ x+2=0\end{matrix}\right. \Rightarrow \left[\begin{matrix} x=0\\ x=-2\end{matrix}\right.\)

Vậy đa thức có nghiệm $x=0; x=-2$

b)

\(-5x^4=0\Leftrightarrow x^4=0\Leftrightarrow x=0\)

Vậy đa thức có nghiệm $x=0$

c)

\(x^2+\sqrt{5}=0\Leftrightarrow x^2=-\sqrt{5}< 0\) (vô lý do bình phương một số thực luôn không âm)

Do đó đa thức vô nghiệm.

d)

\((x^2+3)(-6-4x^4)=0\Rightarrow \left[\begin{matrix} x^2+3=0\\ -6-4x^4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2=-3< 0\\ x^4=\frac{-3}{2}< 0\end{matrix}\right.\) (vô lý)

Do đó đa thức vô nghiệm.

e)

\(3x^8+6=0\Leftrightarrow 3(x^4)^2=-6< 0\) (vô lý)

Do đó đa thức vô nghiệm.

f)

\(x^2+2x-3=0\Leftrightarrow x^2-x+3x-3=0\Leftrightarrow x(x-1)+3(x-1)=0\)

\(\Leftrightarrow (x-1)(x+3)=0\Rightarrow \left[\begin{matrix} x=1\\ x=-3\end{matrix}\right.\)

Đa thức có nghiệm $x=1, x=-3$