K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án đề thi vòng 2:

Bài 1:
a, Ta có: \(2\left|x-3\right|\ge0\)

\(\Rightarrow-2\left|x-3\right|\le0\)

\(\Rightarrow A=9-2\left|x-3\right|\le9\)

Dấu " = " xảy ra khi \(2\left|x-3\right|=0\Rightarrow x=3\)

Vậy \(MAX_A=9\) khi \(x=3\)

b, Ta có: \(B=\left|x-2\right|+\left|x-8\right|=\left|x-2\right|+\left|8-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(B=\left|x-2\right|+\left|8-x\right|\ge\left|x-2+8-x\right|=\left|6\right|=6\)

Dấu " = " xảy ra khi \(\left\{{}\begin{matrix}x-2\ge0\\8-x\ge0\end{matrix}\right.\Rightarrow2\le x\le8\)

Vậy \(MIN_B=6\) khi \(2\le x\le8\)

Bài 2:
a, Ta có: \(a^3+b^3+c^3=0\Rightarrow\left\{{}\begin{matrix}b^3+c^3=-a^3\\a^3+b^3=-c^3\end{matrix}\right.\)

\(\Rightarrow a^3b^3+2b^3c^3+3c^3a^3=a^3b^3+c^3a^3+2c^3a^3+2b^3c^3\)

\(=a^3\left(b^3+c^3\right)+2c^3\left(a^3+b^3\right)\)

\(=a^3\left(-a^3\right)+2c^3\left(-c^3\right)=-a^6-2c^6\le0\)

\(\Rightarrowđpcm\)

b, Ta có: \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=8-1=\sqrt{61-1}< \sqrt{65}-1\)

Vậy \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

Bài 3:

a, Giải:

Gọi 3 cạnh của tam giác tỉ lệ với 2, 3, 4 là a, b, c và 3 chiều cao tương ứng là x, y, z \(\left(a,b,c,x,y,z>0\right)\)

Ta có: \(2S=ax=by=cz\)

\(\Rightarrow\dfrac{a}{2}x.2=\dfrac{b}{3}y.3=\dfrac{c}{4}z.4\)

\(\Rightarrow2x=3y=4z\)

\(\Rightarrow\dfrac{2x}{12}=\dfrac{3y}{12}=\dfrac{4z}{12}\)

\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{3}\)

Vậy 3 chiều cao tương ứng của 3 cạnh đó tỉ lệ với 6, 4, 3

b, Giải:

Gọi hai số cần tìm là \(x,y\left(x,y\ne0;x>y\right)\)

Ta có: \(\dfrac{x+y}{4}=\dfrac{x-y}{1}=\dfrac{xy}{45}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x+y}{4}=\dfrac{x-y}{1}=\dfrac{x+y-x+y}{4-1}=\dfrac{2y}{3}=\dfrac{xy}{45}\)

Tương tự \(\Rightarrow\dfrac{2x}{5}=\dfrac{2y}{3}=\dfrac{xy}{45}\)

\(\Rightarrow18x=30y=xy\)

\(\Rightarrow x=30,y=18\)

Vậy x = 30, y = 18

Bài 4:

A B C K H E M D

Giải:

Gọi H là trung điểm của cạnh AC. K là giao điểm của BE và DH

Ta có: DH // AB, \(DH=\dfrac{AB}{2}=\dfrac{AC}{2}\)

Xét \(\Delta EDK,\Delta EBA\) có:

\(\widehat{DEK}=\widehat{AEB}\) ( đối đỉnh )

ED = EA ( gt )

\(\widehat{EDK}=\widehat{EAB}\) ( so le trong do DH // AB )

\(\Rightarrow\Delta EDK=\Delta EAB\left(g-c-g\right)\)

\(\Rightarrow DK=AB\) ( cạnh tương ứng )

\(\Rightarrow DH=\dfrac{DK}{2}\)

\(\Rightarrow\)H là trung điểm của DK

\(\Delta MDK\) vuông tại M, MH là trung tuyến \(\Rightarrow MH=\dfrac{DK}{2}\)

\(\Rightarrow MH=\dfrac{AC}{2}\)

\(\Delta MAC\) có MH là đường trung tuyến và \(MH=\dfrac{AC}{2}\)

\(\Rightarrow\Delta MAC\) vuông tại M

\(\Rightarrow AM\perp MC\left(đpcm\right)\)

Bài 5:

a, Giải:
p, q là các số nguyên tố lớn hơn 2

\(\Rightarrow p,q\) là số lẻ

Đặt \(p+q=2a\left(a\in N^{\circledast}\right)\)

\(\Rightarrow\dfrac{p+q}{2}=a\)

Vì p < q \(\Rightarrow p+p< p+q< q+q\)

\(\Rightarrow2p< 2a< 2q\)

\(\Rightarrow p< a< q\)

Mà p, q là hai số nguyên tố liên tiếp

\(\Rightarrow\)a là hợp số

Vậy \(\dfrac{p+q}{2}\) là hợp số

b, Vì \(x,y\in N^{\circledast}\Rightarrow100x+43\le100x+100y\)

\(\Rightarrow\left(x+y\right)^5\le100\left(x+y\right)\)

\(\Rightarrow\left(x+y\right)^4\le100< 4^4\)

\(\Rightarrow x+y< 4\)

\(x+y\ge2\left(x,y\in N^{\circledast}\right)\)

\(\Rightarrow\left[{}\begin{matrix}x+y=2\\x+y=3\end{matrix}\right.\)

+) \(x+y=2\Rightarrow x=y=1\) ( thỏa mãn )

+) \(x+y=3\)

\(\Rightarrow x=2,y=1\) ( thỏa mãn )

\(\Rightarrow x=1,y=2\) ( không thỏa mãn )

Vậy \(x=y=1\) hoặc \(x=2,y=1\)

11
2 tháng 6 2017

Cho tui hỏi này nhé: Câu b bài cuối có phải trog đề thi vào chuyên quốc hx huế ko? Tui chỉ mới thấy qua chứ ko bk có đúng ko thôi? hjhj

2 tháng 6 2017

hihi

Đáp án đề thi vòng 1: Bài 1: a, \(A=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{2\left(50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}\right)}=\dfrac{1}{2}\) Vậy \(A=\dfrac{1}{2}\) b,...
Đọc tiếp

Đáp án đề thi vòng 1:

Bài 1:

a, \(A=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{100-\dfrac{8}{13}+\dfrac{4}{15}-\dfrac{4}{17}}=\dfrac{50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}}{2\left(50-\dfrac{4}{13}+\dfrac{2}{15}-\dfrac{2}{17}\right)}=\dfrac{1}{2}\)

Vậy \(A=\dfrac{1}{2}\)

b, \(B=\dfrac{1}{19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\)

\(=\dfrac{9}{9.19}+\dfrac{9}{19.29}+\dfrac{9}{29.39}+...+\dfrac{9}{1999.2009}\)

\(=\dfrac{9}{10}\left(\dfrac{10}{9.19}+\dfrac{10}{19.29}+\dfrac{10}{29.39}+...+\dfrac{10}{1999.2009}\right)\)

\(=\dfrac{9}{10}\left(\dfrac{1}{9}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{29}+\dfrac{1}{29}-\dfrac{1}{39}+...+\dfrac{1}{1999}-\dfrac{1}{2009}\right)\)

\(=\dfrac{9}{10}\left(\dfrac{1}{9}-\dfrac{1}{2009}\right)\)

\(=\dfrac{200}{2009}\)

Vậy \(B=\dfrac{200}{2009}\)

Bài 2:

a, Giải:

Ta có: \(\left(\dfrac{b}{3c}\right)^3=\dfrac{a}{b}.\dfrac{b}{3c}.\dfrac{c}{9a}=\dfrac{1}{27}\Rightarrow\left(\dfrac{b}{3c}\right)^3=\left(\dfrac{1}{3}\right)^3\)

\(\Rightarrow\dfrac{b}{3c}=\dfrac{1}{3}\Rightarrow b=c\left(đpcm\right)\)

b, Ta có: \(\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{2013.2015}+\dfrac{1}{2014.2016}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{2.4}+\dfrac{2}{3.5}+\dfrac{2}{4.6}+...+\dfrac{2}{2013.2015}+\dfrac{2}{2014.2016}\right)\)

\(=\dfrac{1}{2}\left[\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2013.2015}\right)+\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{2014.2016}\right)\right]\)

\(=\dfrac{1}{2}\left[\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2014}-\dfrac{1}{2016}\right)\right]\)

\(=\dfrac{1}{2}\left[\left(1-\dfrac{1}{2015}\right)+\left(\dfrac{1}{2}-\dfrac{1}{2016}\right)\right]\)

\(=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{2015}-\dfrac{1}{2016}\right)=\dfrac{3}{4}-\dfrac{1}{2.2015}-\dfrac{1}{2.2016}< \dfrac{3}{4}\)

\(\Rightarrowđpcm\)

Bài 3:
a, \(VP=\left(x+y\right)\left(x-y\right)=x^2-xy+xy-y^2=x^2-y^2=VT\)

\(\Rightarrowđpcm\)

b, Giải:

a, b, c là độ dài các cạnh của một tam giác nên \(a+b>c,a+c>b,b+c>a\) ( bất đẳng thức tam giác )

\(\Rightarrow a+b-c>0,a-b+c>0,-a+b+c>0\) (*)

Ta có: \(\left\{{}\begin{matrix}a^2-\left(b-c\right)^2\le a^2\\b^2-\left(c-a\right)^2\le b^2\\c^2-\left(a-b\right)^2\le c^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(a+b-c\right)\left(a-b+c\right)\le a^2\\\left(b+c-a\right)\left(b-c+a\right)\le b^2\\\left(c+a-b\right)\left(c-a+b\right)\le c^2\end{matrix}\right.\)

Kết hợp (*) ta có: \(\left[\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\right]^2\le\left(abc\right)^2\)

\(\Rightarrow\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\left(đpcm\right)\)

Vậy \(\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\le abc\)

Bài 4:

A B C I D E

Giải:

Vẽ \(CD\perp BI\) tại D, CD cắt AB tại E

\(\Delta BCE\) cân tại B do BD vừa là đường cao, vừa là đường phân giác

\(\Rightarrow BD\) cũng là đường trung tuyến của \(\Delta BCE\)

\(\Rightarrow BE=BC,CE=2CD\)

Mặt khác: \(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)\)

\(=180^o-\left(\dfrac{\widehat{ABC}}{2}+\dfrac{\widehat{ACB}}{2}\right)=135^o\)

\(\Rightarrow\widehat{DIC}=45^o\Rightarrow\Delta DIC\) vuông cân tại D

Do đó \(CI^2=DI^2+CD^2=2CD^2\)

Ta có: \(AE=BE-AB=BC-AB\)

\(\Delta ACE\) vuông tại A \(\Rightarrow CE^2=AE^2+AC^2\)

\(\Rightarrow4CD^2=\left(BC-AB\right)^2+AC^2\)

\(\Rightarrow2CI^2=\left(BC-AB\right)^2+AC^2\)

\(\Rightarrow CI^2=\dfrac{\left(BC-AB\right)^2+AC^2}{2}\left(đpcm\right)\)

Vậy \(CI^2=\dfrac{\left(BC-AB\right)^2+AC^2}{2}\)

Bài 5:

a, Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2013\right|+\left|x-2016\right|=\left|x-2013\right|+\left|2016-x\right|\ge x-2013+2016-x=3\)

Kết hợp với giả thiết, ta có:

\(\left|x-2014\right|+\left|y-2015\right|\le0\)

Điều này chỉ xảy ra khi:

\(\left\{{}\begin{matrix}\left|x-2014\right|=0\\\left|y-2015\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2014\\y=2015\end{matrix}\right.\)

Thay vào \(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\), ta thấy thỏa mãn

Vậy \(x=2014,y=2015\)

b, Giải:

Giả sử không có hai số nào trong 2013 số tự nhiên \(a_1,a_2,...,a_{2013}\) bằng nhau

Do đó, ta có: \(\dfrac{1}{a_1}+\dfrac{1}{a_2}+...+\dfrac{1}{a_{2013}}\le1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}< 1+\dfrac{1}{2}+\dfrac{1}{2}+...+\dfrac{1}{2}=1+1006=1007\)

Mâu thuẫn với giả thiết

Vậy ít nhất hai trong 2013 số tự nhiên đã cho bằng nhau.

15
29 tháng 5 2017

thầy @phynit sửa chỗ \(\left(BC-AB^2\right)\) thành \(\left(BC-AB\right)^2\) giúp em với ạ!

29 tháng 5 2017

bài 1, 2b, 3a, 5b em lm đúng mà, s đc 6 nhể, trình bày sai chỗ nìu ạ

3 tháng 9 2019

\(a,\frac{15^3.\left(-5\right)^4}{\left(-3\right)^5.5^6}\)\(=\frac{3^3.5^3}{\left(-3\right)^5.5^2}\)\(=-\frac{5}{\left(3\right)^2}=-\frac{5}{9}\)

\(b,\frac{6^3.2.\left(-3\right)^2}{\left(-2\right)^9.3^7}\)\(=-\frac{6^3}{2^8.3^5}\)\(=-\frac{2^3.3^3}{2^8.3^5}\)\(=-\frac{1}{2^5.3^2}=-\frac{1}{288}\)

\(c,\frac{3^6.7^2-3^7.7}{3^7.21}\)\(=\frac{3^6.7\left(7-3\right)}{3^7.21}\)\(=\frac{3^6.7.4}{3^7.7.3}\)\(=\frac{4}{3.3}=\frac{4}{9}\)

3 tháng 9 2019

\(a,\left(x-1,2\right)^2=4\)

\(\Rightarrow x-1,2=2\)

\(\Rightarrow x=3,2\)

\(b,\left(x+1\right)^3=-125\)

\(\Rightarrow\left(x+1\right)^3=\left(-5\right)^3\)

\(\Rightarrow x+1=-5\Rightarrow x=-6\)

\(c,\left(x-5\right)^3=2^6\)

\(\Rightarrow\left(x-5\right)^3=4^3\)

\(\Rightarrow x-5=4\Rightarrow x=9\)

\(d,\left(2x+1\right)^{x+1}=5^{x+1}\)

\(\Rightarrow2x+1=5\Rightarrow x=2\)

10 tháng 5 2019

What???

11 tháng 5 2019

Nà ní!!!!!!!!!

23 tháng 4 2018

\(x.P\left(x+2\right)-\left(x-3\right).P\left(x-1\right)=0\)

\(P\left(x+2\right)\)\(P.\left(x+2\right)\) còn \(P\left(x-1\right)\)\(P.\left(x-1\right)\) à?

23 tháng 4 2018

Ko! Tớ nghĩ ko có phép nhân ở đó đâu vì chỗ x.P(x+2). Nếu nó là phép nhân thì sao chỗ x.P cô viết dấu "." làm gì!

Cậu làm dạng bài nè chưa?