Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) Ta có: \(VT=x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)
c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)
\(=ab+a+ab+b\)
\(=a+b+2ab\)(1)
Thay ab=1 vào biểu thức (1), ta được:
a+b+2(*)
Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)
Thay ab=1 vào biểu thức (2), ta được:
1+a+b+1=a+b+2(**)
Từ (*) và (**) ta được VT=VP(đpcm)
Câu 2:
Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)
\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)
\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)
\(\Leftrightarrow-11x-22=0\)
\(\Leftrightarrow-11x=22\)
hay x=-2
Vậy: x=-2
1)5(x^2-1)+x(1-5x)= x-2
<=>5x2-5+x-5x2=x-2
<=>-5+x=x-2
<=>x-x=-2+5
<=>0x=3(vô lí)
vậy ko tìm được x
a) \(VT=\left(x-1\right)\left(x^2+x+1\right)\)
\(=x^3+x^2+x-x^2-x-1\)
\(=x^3-1=VP\)
b) \(VT=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4=VP\)
c) \(VT=\left(x+y+z\right)^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2+2xz+2yz+z^2\)
\(=x^2+y^2+z^2+2xy+2yz+2zx=VP\)
Chúc bạn học tốt.
a/ \(x^3+1-x^2-x=\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)=\left(x+1\right)\left(x-1\right)^2\)
b/ \(x^4-1-3\left(x^2+1\right)=\left(x^2+1\right)\left(x^2-1\right)-3\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^2-4\right)=\left(x^2+1\right)\left(x-2\right)\left(x+2\right)\)
c/ \(x^2+y^2-2xy-4z^2=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
d/ \(x^2-4x+4-\left(y^2+6y+9\right)\)
\(=\left(x-2\right)^2-\left(y+3\right)^2\)
\(=\left(x+y+1\right)\left(x-y-5\right)\)
e/\(\left(x^2-2x+1\right)^3-\left(y^2\right)^3\)
\(=\left(x^2-2x+1-y^2\right)\left[\left(x^2-2x+1\right)^2+y^4+\left(x-1\right)^2y^2\right]\)
\(=\left[\left(x-1\right)^2-y^2\right]\left[\left(x-1\right)^4+y^4+2\left(x-1\right)^2y^2-\left(xy-y\right)^2\right]\)
\(=\left(x+y-1\right)\left(x-y-1\right)\left[\left(\left(x-1\right)^2+y^2\right)^2-\left(xy-y\right)^2\right]\)
\(=\left(x+y-1\right)\left(x-y-1\right)\left[\left(x-1\right)^2+y^2-xy+y\right]\left[\left(x-1\right)^2+y^2+xy-y\right]\)
f/ \(\left(x+y\right)^3-\left(x^3+y^3\right)\)
\(=x^3+y^3+3xy\left(x+y\right)-\left(x^3+y^3\right)\)
\(=3xy\left(x+y\right)\)
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)
\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)
\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)
\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)
a) (x^2+2xy+y^2) : (x+y)
=(x+y)2:(x+y)
=x+y
b) (125x^3+1) : (5x+1)
=(5x+1)(25x2-5x+1):(5x+1)
=25x2-5x+1
c) (x^2-2xy+y^2) : (y-x)
=(x-y)2:(y-x)
=-(x-y)2:(x-y)
=-(x-y)
=-x+y
Ta có :
\(VT=x\left(y-1\right)+3\left(y-1\right)=\left(y-1\right)\left(x+3\right)\)
\(VP=-\left(1-y\right)\left(x+3\right)=\left(y-1\right)\left(x+3\right)\)
\(\Rightarrow VT=VP\)
Vậy đẳng thức trên đúng
(x+3) y-x+3=(4x+9)y-4x-9
-(4x+9) y+(x+3) y-x-(-4x)+12=0
-3((x-2) y-x-4)=0
(x+2) y-x-4=0
x+2=0
x=-2
y-1=0
y=1