Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Xét \(\Delta CDM\) và \(\Delta EDA\) , ta có :
\(\left\{{}\begin{matrix}\widehat{DMC}=\widehat{DAE}=90^o\\DM=DA\left(\Delta DBA=\Delta DBM\right)\\\widehat{CDM}=\widehat{EDA}\text{( đối đỉnh )}\end{matrix}\right.\)
\(\Rightarrow\Delta CDM=\Delta EDA\left(g.c.g\right)\)
Ta có : \(\left\{{}\begin{matrix}BA=BM\left(\Delta DBA=\Delta DBM\right)\\MC=AE\left(\Delta CDM=\Delta EDA\right)\\BM+MC=BC\left(M\in BC\right)\\BA+AE=BE\left(A\in BE\right)\end{matrix}\right.\)
\(\Rightarrow BC=BE\)
\(\Rightarrow\Delta BEC\) cân tại B
\(\Rightarrow\widehat{MCE}=\dfrac{180^o-\widehat{ABM}}{2}\left(1\right)\)
Ta có : \(\Delta ABM\) cân tại B ( cmt )
\(\Rightarrow\widehat{BMA}=\dfrac{180^o-\widehat{ABM}}{2}\left(2\right)\)
Từ ( 1 ) và ( 2 )
\(\Rightarrow\widehat{MCE}=\widehat{BMA}\)
Mà \(\widehat{MCE}\) và ở vị trí đồng vị
\(\Rightarrow\) AM // EC
Ta có : \(DC=DE\left(\Delta CDM=\Delta EDA\right)\)
\(\Rightarrow\Delta DCE\) cân tại D
d. Ta có : \(\left\{{}\begin{matrix}BA=BM\left(\Delta DBA=\Delta DBM\right)\\DA=DM\left(\Delta DBA=\Delta DBM\right)\end{matrix}\right.\)
\(\Rightarrow\) BD là đường trung trực của đoạn thẳng AM
\(\Rightarrow BD\perp AM\)
Vì \(\left\{{}\begin{matrix}\text{BD\perp AM}\left(cmt\right)\\BD\perp CH\left(gt\right)\end{matrix}\right.\)
\(\Rightarrow\) AM // CH
Mà AM // EC
\(\Rightarrow\) Tia CH và tia EC trùng nhau
\(\Rightarrow\) 3 điểm C , H , E thẳng hàng
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
câu d mình k hiểu trung trực của bd và cd bạn ns rõ ra mình làm cho
cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)
hay 92 + 122 = BC2
=> BC2 = 81 + 144 = 225 => BC = √225=15cm225=15cm
trong tam giác ABC có: AB < AC < BC
=> góc C < góc B < góc A (định lý)
b) xét tam giác ABD và tam giác MBD có:
góc A = góc M = 900 (gt)
BD chung
góc B1 = góc B2 (gt)
=> tam giác ABD = tam giác MBD (ch-gn)
c) xét tam giác ADE và tam giác MCD có:
góc A = góc M = 900 (gt)
AD = DM (tam giác ABD = tam giác MBD)
góc ADE = góc MDC (đối đỉnh)
=> tam giác ADE = tam giác MDC (g.c.g)
=> AE = MC (cạnh tương ứng)
ta có: BE = BA + AE
BC = BM + MC
mà BA = BM (tam giác ở câu a)
AE = MC (cmt)
=> BE = BC
=> tam giác BEC cân tại E
hok tốt