K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

c) Xét \(\Delta CDM\)\(\Delta EDA\) , ta có :

\(\left\{{}\begin{matrix}\widehat{DMC}=\widehat{DAE}=90^o\\DM=DA\left(\Delta DBA=\Delta DBM\right)\\\widehat{CDM}=\widehat{EDA}\text{( đối đỉnh )}\end{matrix}\right.\)

\(\Rightarrow\Delta CDM=\Delta EDA\left(g.c.g\right)\)

Ta có : \(\left\{{}\begin{matrix}BA=BM\left(\Delta DBA=\Delta DBM\right)\\MC=AE\left(\Delta CDM=\Delta EDA\right)\\BM+MC=BC\left(M\in BC\right)\\BA+AE=BE\left(A\in BE\right)\end{matrix}\right.\)

\(\Rightarrow BC=BE\)

\(\Rightarrow\Delta BEC\) cân tại B

\(\Rightarrow\widehat{MCE}=\dfrac{180^o-\widehat{ABM}}{2}\left(1\right)\)

Ta có : \(\Delta ABM\) cân tại B ( cmt )

\(\Rightarrow\widehat{BMA}=\dfrac{180^o-\widehat{ABM}}{2}\left(2\right)\)

Từ ( 1 ) và ( 2 )

\(\Rightarrow\widehat{MCE}=\widehat{BMA}\)

\(\widehat{MCE}\) và ở vị trí đồng vị

\(\Rightarrow\) AM // EC

Ta có : \(DC=DE\left(\Delta CDM=\Delta EDA\right)\)

\(\Rightarrow\Delta DCE\) cân tại D

26 tháng 4 2017

d. Ta có : \(\left\{{}\begin{matrix}BA=BM\left(\Delta DBA=\Delta DBM\right)\\DA=DM\left(\Delta DBA=\Delta DBM\right)\end{matrix}\right.\)

\(\Rightarrow\) BD là đường trung trực của đoạn thẳng AM

\(\Rightarrow BD\perp AM\)

\(\left\{{}\begin{matrix}\text{BD\perp AM}\left(cmt\right)\\BD\perp CH\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\) AM // CH

Mà AM // EC

\(\Rightarrow\) Tia CH và tia EC trùng nhau

\(\Rightarrow\) 3 điểm C , H , E thẳng hàng

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

https://h.vn/hoi-dap/question/168197.html

tham khảo nhé bạn

25 tháng 4 2017

câu d mình k hiểu trung trực của bd và cd bạn ns rõ ra mình làm cho

25 tháng 4 2017

phải của tam giác chứ sao là cạnh đc bạn

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0

25 tháng 4 2019

trả lời hô mình cái mn ơi

11 tháng 2 2021

a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)

                                  hay 92 + 122 = BC2

=> BC2 = 81 + 144 = 225 => BC = √225=15cm225=15cm

trong tam giác ABC có: AB < AC < BC

                          => góc C < góc B < góc A (định lý)

b) xét tam giác ABD và tam giác MBD có:

           góc A = góc M = 900 (gt)

                BD chung

          góc B1 = góc B2 (gt)

=> tam giác ABD = tam giác MBD (ch-gn)

c) xét tam giác ADE và tam giác MCD có:

           góc A = góc M = 900 (gt)

               AD = DM (tam giác ABD = tam giác MBD)

            góc ADE = góc MDC (đối đỉnh)

=> tam giác ADE = tam giác MDC (g.c.g)

        => AE = MC (cạnh tương ứng)

ta có: BE = BA + AE

          BC = BM + MC

mà BA = BM (tam giác ở câu a)

      AE = MC (cmt)

=> BE = BC

=> tam giác BEC cân tại E

hok tốt