Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)
\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)
\(2A=1+\left(\frac{1-\frac{1}{3^{100}}}{2}\right)-\frac{101}{3^{101}}< 1+\frac{1}{2}=\frac{3}{2}\)
\(\Rightarrow A< \frac{3}{2}:2=\frac{3}{4}\)( đpcm )
Ta có:
\(3D=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(3D-D=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)
\(2D=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
Đặt \(E=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3E=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3E-E=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2E=3-\frac{1}{3^{99}}< 3\)
\(E< \frac{3}{2}\)
\(2D< \frac{3}{2}-\frac{1}{3^{100}}< \frac{3}{2}\)
\(D< \frac{3}{4}\)
Vậy...
\(S=3+3^2+3^3+....+3^{100}\)
\(3S=3^2+3^3+3^4+...+3^{101}\)
\(3S-S=3^2+3^3+3^4+...+3^{101}-3-3^2-3^3-....-3^{100}\)
\(2S=3^{101}-3\)
\(S=\frac{3^{101}-3}{2}\)
Mà \(P=3^{101}\)
=> S < P
Mình sửa lại đề là P = 3101 nhé, chứ ko để 2101 thì ko làm được
\(D=\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\)
\(\Rightarrow3D=2+\frac{3}{3}+...+\frac{101}{3^{99}}\)
\(\Rightarrow2D=\left(2-\frac{101}{3^{100}}\right)+\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)
Đặt \(E=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3E=1+\frac{1}{3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow2E=1-\frac{1}{3^{99}}\Rightarrow E=\frac{1-\frac{1}{3^{99}}}{2}\)
\(\Rightarrow2D=\left(2-\frac{101}{3^{100}}\right)+\left(\frac{1-\frac{1}{3^{99}}}{2}\right)\)
\(\Rightarrow D=\frac{\left(2-\frac{101}{3^{100}}\right)+\left(\frac{1-\frac{1}{3^{99}}}{2}\right)}{2}\)