Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{17.19}\right)\left(1+\frac{1}{18.20}\right)\)
\(=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{324}{17.19}\frac{361}{18.20}\)
\(=\frac{2.2.3.3.4.4...18.18.19.19}{1.3.2.4.3.5...17.19.18.20}\)
Thấy kể từ phân số thứ 2 trở đi đến phân số thứ 2 từ cuối lên, ở tử và mẫu có thừa số a.a thì ở phân số trước và sau phân số đó cũng có mẫu chứa thừa số a nên ta rút gọn chúng.
=2.2.3.3.4.4...18.18.19.19/1.3.2.4.3.5...17.19.18.20
\(=\frac{2}{1.20}\)
\(=\frac{1}{10}\)
\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)...\left(1+\frac{1}{99.101}\right)\)
\(=\frac{4}{1.3}.\frac{9}{2.4}....\frac{10000}{99.101}\)
\(=\frac{2.2.3.3...100.100}{1.3.2.4...99.101}\)
\(=\frac{\left(2.3.4...100\right)\left(2.3.4...100\right)}{\left(1.2...99\right)\left(3.4.5...101\right)}\)
\(=\frac{100.2}{101}=\frac{200}{101}\)
\(D=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)
\(D=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{10000}{99.101}\)
\(D=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{100^2}{99.101}\)
\(D=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4.5...101}=100.\frac{2}{101}=\frac{200}{101}\)
Vậy \(D=\frac{200}{101}\)
\(\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(\frac{1}{3.5.}\right).....\left(1+\frac{1}{99.101}\right)\)
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.....\frac{10000}{9999}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{100^2}{99.101}\)
\(=\frac{2^2.3^2.4^2.5^2.....98^2.99^2.100^2}{1.2.3^2.4^2.5^2......99^2.100.101}\)
\(=\frac{2.100}{1.101}\)
\(=\frac{200}{101}\)
Ta có :\(\left(1+\frac{1}{1.3}\right)+\left(1+\frac{1}{2.4}\right)+...+\left(1+\frac{1}{18.20}\right)\)
= \(\frac{4}{1.3}+\frac{9}{2.4}+...+\frac{361}{18.20}\)
= \(\frac{2.2.3.3.4.4.....18.18.19.19}{1.3.2.4.3.5.....17.19.18.20}\)
= \(\frac{2.19}{1.20}=\frac{19}{10}\)
\(C=\left(1+\frac{1}{1.3}\right)\)\(.\left(1+\frac{1}{2.4}\right)\)\(.\left(1+\frac{1}{3.5}\right)\)\(.\left(1+\frac{1}{2014.2016}\right)\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{2015^2}{2014.2016}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2015.2015}{2014.2016}\)
\(=\frac{\left(2.3.4...2015\right).\left(2.3.4...2015\right)}{\left(1.2.3...2014\right).\left(3.4.5...2016\right)}\)
\(=\frac{2015.2}{2016}\)
\(=...\)(tự tinhs)
\(D=\left(1+\dfrac{1}{1\cdot3}\right)\cdot\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{17\cdot19}\right)\)
\(=\left(1+\dfrac{1}{2^2-1}\right)\cdot\left(1+\dfrac{1}{3^2-1}\right)\cdot...\cdot\left(1+\dfrac{1}{18^2-1}\right)\)
\(=\dfrac{2^2}{2^2-1}\cdot\dfrac{3^2}{3^2-1}\cdot...\cdot\dfrac{18^2}{18^2-1}\)
\(=\dfrac{2\cdot3\cdot...\cdot18}{1\cdot2\cdot...\cdot17}\cdot\dfrac{2\cdot3\cdot...\cdot18}{3\cdot4\cdot...\cdot19}\)
\(=\dfrac{18}{1}\cdot\dfrac{2}{19}=\dfrac{36}{19}\)