Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ĐKXĐ: x<>0; x<>1
\(P=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)
\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}=\dfrac{x^2}{x-1}\)
b: |2x+1|=3
=>x=1(loại); x=-2(nhận)
Khi x=-2 thì P=4/-3=-4/3
c: P=-1/2
=>x^2/x-1=-1/2
=>2x^2=-x+1
=>2x^2+x-1=0
=>2x^2+2x-x-1=0
=>(x+1)(2x-1)=0
=>x=1/2; x=-1
(x+2)(x+3)-(x-2)(x+5)=0
=> x2+5x+6-x2-3x+10=0
=>2x+16=0
=>2x=-16
=>x=-8
ĐKXĐ: \(x\ne\pm1;-2\)
\(P=\left(\frac{x+1}{x-1}+\frac{2}{x^2-1}-\frac{x}{x+1}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{\left(x+1\right)^2}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{x^2+2x+1}{\left(x-1\right).\left(x+1\right)}+\frac{2}{\left(x-1\right).\left(x+1\right)}-\frac{x^2-x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\left(\frac{x^2+2x+1+2-x^2+x}{\left(x-1\right).\left(x+1\right)}\right).\frac{x-1}{x+2}\)
\(=\frac{3x+3}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{x+2}=\frac{3}{x+2}\)
c. \(x^2-3x=0\Leftrightarrow x.\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Nếu x=0 thì: \(P=\frac{3}{x+2}=\frac{3}{0+2}=\frac{3}{2}\)
Nếu x=3 thì: \(P=\frac{3}{x+2}=\frac{3}{3+2}=\frac{3}{5}\)
d. Ta có: \(P=\frac{3}{x+2}\inℤ\)
Vì \(x\inℤ\Rightarrow x+2\inℤ\Rightarrow x+2\inƯ\left\{3\right\}\Rightarrow x+2\in\left\{\pm1;\pm3\right\}\Leftrightarrow x\in\left\{-3;-1;1;-5\right\}\)
Kết hợp ĐKXĐ \(\Rightarrow x\in\left\{-3;-5\right\}\)
a) \(\left(2x-5\right)^2-\left(2x+3\right)\left(2x-3\right)=10\Leftrightarrow\left(4x^2-20x+25\right)-\left(4x^2-9\right)-10=0\)
\(\Leftrightarrow-20x+24=0\Leftrightarrow x=\frac{6}{5}\)
b) \(\left(4x-1\right)\left(x+2\right)-\left(2x+3\right)^2-5\left(x-1\right)=9\Leftrightarrow-10x-15=0\)
\(\Leftrightarrow x=\frac{-3}{2}\)
c) \(\left(x+1\right)^3-\left(x-1\right)^3-2=6\Leftrightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-8=0\)
\(\Leftrightarrow6x^2-6=0\Leftrightarrow x=\pm1\)
d) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x+1\right)\left(x^2-x+1\right)-3\left(-x-2\right)=5\)
\(\Leftrightarrow\left(x^3+8\right)-\left(x^3+1\right)+3x+6=5\Leftrightarrow3x+8=0\Leftrightarrow x=\frac{-8}{3}\)
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn và hỗ trợ tốt hơn nhé
f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)
\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)
\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)
\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)
\(-x^3=27\)
\(x=-3\)
\(A\))\(\left(x-1\right)^2+\left(x-3\right)^2-2x^2+1=0\)
\(x^2-2x+1+x^2-6x+9-2x^2+1=0\)
\(11-8x=0\)
\(\Rightarrow x=\frac{11}{8}\)
\(B\))\(\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)+2x=0\)
\(x^3-1-x^3-1+2x=0\)
\(2x-2=0\)
\(\Rightarrow x=1\)
\(A=\left(x-1\right)^2+\left(x-3\right)^2-2x^2+1=0\)
\(\Rightarrow x^2-2x+1+x^2-6x+9-2x^2+1=0\)
\(\Rightarrow\left(x^2+x^2-2x^2\right)+\left(-2x-6x\right)+\left(1+9+1\right)\)
\(\Rightarrow-8x+12=0\Leftrightarrow x=\frac{-11}{-8}=\frac{11}{8}\)
\(B=\left(x-1\right).\left(x^2+x-1\right)-\left(x+1\right).\left(x^2-x+1\right)+2x=0\)
\(\Rightarrow x.\left(x^2+x-1\right)-x^2-x+1-x.\left(x^2-x+1\right)-x^2+x-1+2x=0\)
\(\Rightarrow x^3+x^2-1-x^2-x+1-x^3+x^2-x-x^2+x-1+2x=0\)
\(\Rightarrow\left(x^3-x^3\right)+\left(x^2-x^2+x^2-x^2\right)+\left(-1+1-1\right)+\left(-x-x+x\right)+2x=0\)
\(\Rightarrow-1+x=0\Leftrightarrow x=1\)
\(C=\left(x-5\right).\left(x-5\right)+\left(2x+1\right)^2-3x^2=0\)
\(\Rightarrow x.\left(x-5\right)-5.\left(x-5\right)+\left(2x\right)^2+2.2x.1+1^2-3x^2=0\)
\(\Rightarrow x^2-5x-5x+25+4x^2+4x+1-3x^2=0\)
\(\Rightarrow\left(x^2-3x^2+4x^2\right)+\left(-5x-5x+4x\right)+26=0\)
\(\Rightarrow2x^2-6x+26=0\Leftrightarrow x=\)
\(D=\left(x-1\right)-9=0\Leftrightarrow x-1=9\Leftrightarrow x=10\)