Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 - y2 + 4x + 4
= ( x2 + 4x + 4 ) - y2
= ( x + 2 )2 - y2
= ( x + 2 - y )( x + 2 + y )
b) x2 - 2xy + y2 - 1
= ( x2 - 2xy + y2 ) - 1
= ( x - y )2 - 12
= ( x - y - 1 )( x - y + 1 )
c) x2 - 2xy + y2 - 4
= ( x2 - 2xy + y2 ) - 4
= ( x - y )2 - 22
= ( x - y - 2 )( x - y + 2 )
d) x2 - 2xy + y2 - z2
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - z2
= ( x - y - z )( x - y + z )
e) 25 - x2 + 4xy - 4y2
= 25 - ( x2 - 4xy + 4y2 )
= 52 - ( x - 2y )2
= ( 5 - x + 2y )( 5 + x - 2y )
f) x2 + y2 - 2xy - 4z2
= ( x2 - 2xy + y2 ) - 4z2
= ( x - y )2 - ( 2z )2
= ( x - y - 2z )( x - y + 2z )
a) \(-\left(x+2\right)\cdot\left(x^2-1x+4\right)\)
\(=-\left(x+2\right)\cdot\left(x^2-x+4\right)\)
\(=-\left(x^3-x^2+4x+2x^2-2x+8\right)\)
\(=-\left(x^3+x^2+2x+8\right)\)
\(=-x^3-x^2-2x-8\)
b) \(-\left(x+2y\right)\cdot\left(x^2-2xy+y^2\right)\)
\(=-\left(x^3-2x^2y+xy^2+2x^2y-4xy^2+2y^3\right)\)
\(=-\left(x^3-3xy^2+2y^3\right)\)
\(=-x^3+3xy^2-2y^3\)
c) \(-\left(5-a\right)\cdot\left(25+5a+a^2\right)\)
\(=-\left(125-a^3\right)\)
\(=-125+a^3\)
d) \(-\left(x-2y\right)\cdot\left(x^2+2xy+4y^2\right)\)
\(=-\left(x^3-8y^3\right)\)
\(=-x^3+8y^3\)
a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)
\(=xy\left(2xy-\frac{4}{3}x+2\right)\)
b) 2xy2.(x + 5y) - 4xy(5y + x)
= (5y + x)(2xy2 - 4xy)
= 2xy(5y + x)(y - 2)
c) 25 - 4x2 - y2 + 4xy
= 25 - (4x2 - 4xy + y2)
= 52 - (2x + y)2
= (5 - 2x - y)(5 + 2x + y)
d) x2 + 4x - 2xy - 4y +y2
= (x2 - 2xy + y2) + (4x - 4y)
= (x - y)2 + 4(x - y)
= (x - y)(x - y + 4)
e) 12y3 - 3x2y + 12xy - 12y
= 3y(4y2 - x2 + 4x - 4)
= 3y[4y2 - (x - 2)2]
= 3y(2y - x + 2)(2y + x - 2)
f) 64x4 + y4
= (8x2)2 + 16x2y2 + y4 - 16x2y2
= (8x2 + y2)2 - (4xy)2
= (8x2 + y2 - 4xy)(8x2 + y2 + 4xy)
a) \(2x^2y^2-\frac{4}{3}x^2y+2xy\)
b) \(2xy^2\left(x+5y\right)-4xy\left(5y+x\right)\)
\(=\left(x+5y\right)\left(2xy^2-4xy\right)\)
\(=2\left(x+5y\right)\left(xy^2-2xy\right)\)
c) \(25-4x^2-y^2+4xy\)
\(=25-\left(4x^2+y^2-4xy\right)\)
\(=5^2-\left[\left(2x\right)^2-2.2x.y+y^2\right]\)
\(=5^2-\left(2x-y\right)^2\)
\(=\left(5-2x+y\right)\left(5+2x-y\right)\)
d) \(x^2+4x-2xy-4y+y^2\)
\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)
\(=\left(x-y\right)^2+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y\right)+4\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y+4\right)\)
e) \(12y^3-3x^2y+12xy-12y\)
f) \(64x^4+y^4\)
\(=\left(8x^2\right)^2+16x^2y^2+\left(y^2\right)^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2+4xy\right)\left(8x^2+y^2-4xy\right)\)
Bài làm
a) A = x2 + 2y2 - 6x + 8y + 25
A = ( x2 + 6x + 9 ) + 2( y2 + 4y + 4 ) + 8
A = ( x + 3 )2 + 2( y + 2 )2 + 8 > 8
Dấu " = " xảy ra <=> x = -3 ; y = -2.
Vậy AMin = 8 khi x = -3; y = -2
Mấy câu sau tương tự, tự giải theo, bh duyệt bài bên lazi đây,
Bài 1:
a) \(25-x^2+2xy-y^2=25-\left(x^2-2xy+y^2\right)\)
\(=5^2-\left(x-y\right)^2=\left(5-x+y\right)\left(5+x-y\right)\)
b) \(18-x^2+12xz-9z^2\): không thể phân tích thành nhân tử
c) Không thể phân tích thành nhân tử.
d) \(16-x^2-2xy-y^2=4^2-\left(x^2+2xy+y^2\right)\)
\(=4^2-\left(x+y\right)^2=\left(4-x-y\right)\left(4+x+y\right)\)
e) Sử đề \(x^2+2xy+y^2-z^2-4zt-4t^2\)
\(=\left(x+y\right)^2-\left(z^2+2.z.2t+\left(2t\right)^2\right)\)
\(=\left(x+y\right)^2-\left(z+2t\right)^2=\left(x+y-z-2t\right)\left(x+y+z+2t\right)\)
f) \(x^4+4=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
g) \(x^4+64=x^4+16x^2+64-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2=\left(x^2+4x+8\right)\left(x^2-4x+8\right)\)
h) \(x^4+36x^2+324-36x^2\)
\(=\left(x^2+18\right)^2-\left(6x\right)^2=\left(x^2-6x+18\right)\left(x^2+6x+18\right)\)
x2-25+y2+2xy
= (x2+2xy+y2)-25
= (x+y)2-25
= (x+y-25)(x+y+25)
x^2 - 25 + y^2 + 2xy
= (x^2 + 2xy + y^2) - 5^2
= ( x + y )^2 - 5^2
= ( x + y - 5 ).( x + y + 5 )