Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>3x-6-5=2x+6
=>3x-11=2x+6
hay x=17
b: (x+5)(x2-4)=0
=>(x+5)(x+2)(x-2)=0
hay \(x\in\left\{-5;-2;2\right\}\)
c: \(\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
hay \(x\in\left\{-1;2;-2\right\}\)
d: \(\left(4-x\right)\left(x+1\right)\ge0\)
=>(x-4)(x+1)<=0
hay -1<=x<=4
\(\left(x^2-5\right)\left(x^2+1\right)=0\)
<=> \(\hept{\begin{cases}x^2-5=0\\x^2+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x^2=5\\x^2=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=\sqrt{5};x=-\sqrt{5}\\x\in\varnothing\end{cases}}\)
câu còn lại tương tự nha
a) (x-1).(x+2)=0
=> +)x-1=0=>x=1
+)x+2=0=>x=-2
vậy x thuộc {1;-2)
b) (x+4).(4-x)=0
suy ra: +) x+4=0=>x=-4
+)4-x=0=>x=4
vậy x thuộc {-4;4}
c) (x+4)(-3x+9)=0
suy ra : +) x+4= 0=>x=-4
+)-3x+9=0=>x=3
vậy x thuộc {-4;3)
d) (2x-4)(x+3)=0
suy ra : +) 2x-4=0=>x=2
+)x+3=0=>x=-3
vậy x thuộc {2;-3}
e) (x2-9).(2x+10)=0
suy ra : +) x2-9=0=>x=9/2
+) 2x+10=0=>x=-5
Vậy x thuộc {9/2;-5}
g) (4-x).x2=0
suy ra : +)4-x=0 => x=4
+) x.2=0=> x=0
Vậy x thuộc {4;0}
HT
c) (3x-4)(x-1)3=0
\(\Leftrightarrow\orbr{\begin{cases}3x-4=0\\\left(x-1\right)^3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=4\\x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=1\end{cases}}}\)
d) (x-4)(x-3)=0
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=3\end{cases}}}\)
e) (x+3)(2-x)>0
=> x+3 và 2-x cung dấu
TH1: Cùng âm
\(\hept{\begin{cases}x+3< 0\\2-x< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -3\\x>2\end{cases}}}\)(loại)
TH2L cùng dương
\(\hept{\begin{cases}x+3>0\\2-x>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Leftrightarrow}-3< x< 2}\)
f) (x+1)+(x+2)+(x+3)+....+(x+100)=7450
<=> (x+x+x+....+x)+(1+2+3++.....+100)=7450
<=> 100x+\(\frac{\left(100+1\right)\cdot100}{2}=7450\)
<=> 100x+5050=7450
<=> 100x=2400
<=> x=24
a, => x+5>0;x-4>0 hoặc x+5<0;x-4<0
=> x>4 hoặc x<-5
b, Vì x-3 < x+7 => x-3<0;x+7>0
=> x<3;x>-7 => -7<x<3
c, Vì x^2+1 >0 => x+3 > 0 => x>-3
d, Vì x^2-4 > x^2-16
=> x^2-4>0;x^2-16<0
=> x^2>4;x^2<16
=> 4<x^2<16
=> 2 < = x < = 4 hoặc -4 < = x < = -2
Tk mk nha
a, 3 ( x + 1 ) - 2 ( 3 x - 4 ) = - 13
=> 3x + 3 - 6x + 8 = - 13
=> 6x - 3x = 3 + 8 + 13
=> 3x = 24
=> x = 8
b, 2 ( x - 3 ) - 4 ( 2 x - 1 ) = - 20
=> 2x - 6 - 8x + 4 = - 20
=> 8x - 2x = - 6 + 4 + 20
=> 6x = 18
=> x = 3
c, 2 x ( x + 3 ) = 0
=> \(\orbr{\begin{cases}2x=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
d, ( x - 1 ) ( 5 x - x ) = 0
=> \(\orbr{\begin{cases}x-1=0\\5x-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\4x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)
e, ( x + 3 ) 2 ( 4 - x ) = 0
=> \(\orbr{\begin{cases}\left(x+3\right)^2=0\\4-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x+3=0\\4-x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)
a) \(3\left(x+1\right)-2\left(3x-4\right)=-13\)
\(\Leftrightarrow3x+3-6x+8=-13\)
\(\Leftrightarrow3x-6x=-13-3-8\)
\(\Leftrightarrow-3x=-24\)
\(\Leftrightarrow x=8\)
Vậy \(x=8\)
b) \(2\left(x-3\right)-4\left(2x-1\right)=-20\)
\(\Leftrightarrow2x-6-8x+4=-20\)
\(\Leftrightarrow2x-8x=-20+6-4\)
\(\Leftrightarrow-6x=-18\)
\(\Leftrightarrow x=3\)
Vậy \(x=3\)
c) \(2x\left(x+3\right)=0\)
\(\orbr{\begin{cases}2x=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
d)\(\left(x-1\right)\left(5x-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\4x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
e)\(\left(x+3\right)^2\left(4-x\right)=0\)
\(\orbr{\begin{cases}\left(x+3\right)^2=0\\4-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x+3=0\\-x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
Vậy \(\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)
a) \(\left(x-3\right)\left(4-x\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-3=0\\4-x=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy....
b/ \(\left(x-3\right)\left(4-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\4-x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy ...
b/ \(x^2=2x\)
\(\Leftrightarrow x.x=2x\)
\(\Leftrightarrow x=2\)
Vậy ,...
d/ \(\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x^2+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=5\\x\in\varnothing\end{cases}}\)
Vậy ...
Câu 1 : \(-a.\left(c-d\right)-d.\left(a+c\right)=-c.\left(a+d\right)\)
Ta có : \(VT=-a.\left(c-d\right)-d\left(a+c\right)\)
\(=-ac+ad-da-dc\)
\(=-ac-dc\)
\(=-c\left(a+d\right)=VP\)
\(\Rightarrow-a\left(c-d\right)-d\left(a+c\right)=-c\left(a+d\right)\left(đpcm\right)\)
Câu 2 :
1, \(x.\left(x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
2, \(\left(x+12\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
3, \(\left(-x+5\right)\left(3-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
4, \(x\left(2+x\right)\left(7-x\right)=0\)
\(\Rightarrow x=0;2+x=0\)hoặc \(7-x=0\)
\(\Rightarrow x=0;x=-2\)hoặc \(x=7\)
d)x.(-2+-4)=0
x.-6=0
x=0:-6
x=0
Mình không chắc nhưng mong là đúng