Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\left(7^1+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(\Rightarrow D=7^1.\left(1+7+7^2+7^3\right)+7^5.\left(1+7+7^2+7^3\right)+...+7^{4n-3}.\left(1+7+7^2+7^3\right)\)
\(\Rightarrow D=7^1.400+7^5.400+...+7^{4n-3}.400=400.\left(7^1+7^5+...+7^{4n-3}\right)\)
Vậy D chia hết cho 400
Ta có: \(A=7+7^2+7^3+.....+7^{4n}\) \(\left(n\in N\right)\)
\(\Leftrightarrow A=7\left(1+7+7^2+7^3\right)+......+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(\Leftrightarrow A=7.400+7^5.400+....+7^{4n-3}.400\)
\(\Leftrightarrow\left(7+7^5+....+7^{4n-3}\right).400\) chia hết cho 400
Vậy A chia hết cho 400
Bạn Nguyễn Đức Tiến có thể viết rõ hộ mình được không ạ? Mình chưa hiểu
\(A=7+7^2+7^3+7^4+.............+7^{4n}\)
\(\Leftrightarrow A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+........+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(\Leftrightarrow A=7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)+........+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(\Leftrightarrow A=7.400+7^5.400+...........+7^{4n-3}.400\)
\(\Leftrightarrow A=400\left(7+7^5+........+7^{4n-3}\right)⋮400\left(đpcm\right)\)
a) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55\)
Ta có: 55 chia hết cho 11
Nên \(7^4.55\)chia hết cho 11
Hay \(7^6+7^5-7^4\)chia hết cho 11
Câu b,c làm tương tự