Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9^{1945}=9^{1944}.9=\left(9^2\right)^{972}.9=81^{972}.9\)
vì 81^972 có CSTC là 1=>9^1945 có CSTC là 9
\(2^{1930}=2^{1928}.2^2=\left(2^4\right)^{482}.4=16^{482}.4\)
=>16^482 có CSTC là 6=>16^482.4 có CSTC là 4=>2^1930 có CSTC là 4
=>9^1945-2^1930 có CSTC là 9-4=5 chia hết cho 5
Vậy ...
a) Ta có:
\(9^{1945}-2^{1930}=...9-...4\) (Dấu hiệu số cuối của 1 lũy thừa)
\(=...5⋮5\)
\(\Rightarrow9^{1945}-2^{1930}⋮5\)
Vậy \(9^{1945}-2^{1930}⋮5\left(đpcm\right)\)
b) Ta có:
\(4^{2010}+2^{2014}=...6+...4\)
\(=...10⋮10\)
\(\Rightarrow4^{2010}+2^{2014}⋮10\)
Vậy \(4^{2010}+2^{2014}⋮10\left(đpcm\right)\)
a,\(\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\Leftrightarrow\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{12}=\frac{2y}{4}=\frac{4z}{12}=\frac{3x-2y+4z}{12-4+12}=\frac{20}{20}=1\)
Suy ra:\(\hept{\begin{cases}\frac{x}{4}=1\\\frac{y}{2}=1\\\frac{z}{3}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\\z=3\end{cases}}\)
b, Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{2}=\frac{y}{6}=\frac{x-y}{2-6}=\frac{10}{-4}=-\frac{5}{2}\)
Suy ra:\(\hept{\begin{cases}\frac{x}{2}=-\frac{5}{2}\\\frac{y}{6}=-\frac{5}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-15\end{cases}}}\)
câu b:
\(\dfrac{x}{2}=\dfrac{y}{6}\\ \dfrac{x}{2}=\dfrac{y}{6}=\dfrac{x-y}{2-6}=\dfrac{10}{-4}=\dfrac{5}{-2}\\ x=\dfrac{5}{-2}.2=\dfrac{10}{-2}=-5\\ y=\dfrac{5}{-2}.6=-15\)
câu a:
\(\dfrac{x}{4}=\dfrac{y}{2}=\dfrac{z}{3}\\ \dfrac{3x}{3.4}=\dfrac{2y}{2.2}=\dfrac{4z}{4.3}\\ \)
ta có
\(\dfrac{3x}{3.4}=\dfrac{2y}{2.2}=\dfrac{4z}{4.3}=\dfrac{3x+2y+4z}{12+4+12}=\dfrac{20}{28}=\dfrac{5}{7}\\ x=\dfrac{5}{7}:4=\dfrac{5}{28}\\ y=\dfrac{5}{7}:2=\dfrac{5}{14}\\ z=\dfrac{5}{7}:3=\dfrac{5}{21}\)
\(A=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{9}\)
=1/3+1/2+2/5+1/3+2/7+1/4+1/9
=2789/1260
b: \(\dfrac{3x}{5}=\dfrac{y}{4}\)
nên \(\dfrac{x}{\dfrac{5}{3}}=\dfrac{y}{4}\)
=>x/5=y/12
Đặt x/5=y/12=k
=>x=5k; y=12k
Ta có: xy=180
=>60k^2=180
=>k^2=3
TH1: \(k=\sqrt{3}\)
=>\(x=5\sqrt{3};y=12\sqrt{3}\)
TH2: \(k=-\sqrt{3}\)
=>\(x=-5\sqrt{3};y=-12\sqrt{3}\)