Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA co a/b be hon c/d suy ra da be hon bc suy ra ab+ad be hon ab+bc suy ra a(b+d) be hon b(a+c) suy ra a/b be hon a+c/b+d
ta co da be hon bc suy ra ad+dc be hon cb+cd suy ra d(a+c) be hon c(b+d) suy ra a+c/b+d be hon c/d
Chắc bạn ghi sai đề. Đề đúng đâu: Chứng tỏ: Nếu \(\frac{a}{b}< \frac{c}{d}\) với \(\left(a,b,c,d\in Z;b,d\ne0\right)\) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) .
\(\Rightarrow ad+ab< bc+ab\) .
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Ta có: \(ad< bc\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
a,
b, a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d)
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d
Vì \(b,d>0\)nên \(bd>0\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\)
\(\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
\(\Leftrightarrow ad< bc\)vì \(bd>0\)
ĐỀ sai
a = 1 ; b = 4 ; c = 1 ; d = 2 ta có
\(\frac{1}{4}<\frac{1}{2}\)
Nhưng z = \(\frac{1+1}{2+4}=\frac{2}{6}=\frac{1}{3}\) không lớn hơn 1/2 hay y
Phải là x < z < y
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ad+ab< ab+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(vì \(b,d>0\)).
\(ad< bc\Leftrightarrow ad+cd< bc+cd\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\).
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ad+ab< bc+ab\Leftrightarrow a\left(d+b\right)< b\left(c+a\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)(2)
Từ (1) và (2) suy ra điều phải chứng minh
\(\frac{a}{b}< \frac{c}{d}\rightarrow ad< bc\)
\(\rightarrow ad+ab< bc+ab\)
\(\rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)
\(\rightarrow\frac{a}{b}< \frac{a+c}{b+d}\) \(\left(1\right)\)
\(\text{Ta có:}\)
\(ad< bc\)
\(\rightarrow ad+cd< bc+cd\)
\(\rightarrow d.\left(a+c\right)< c.(b+d)\)
\(\rightarrow\frac{a+c}{b+d}< \frac{c}{d}\) \(\left(2\right)\)
\(\text{Từ}\)\(\left(1\right)\)\(\text{và}\)\(\left(2\right)\)\(\rightarrow\)\(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)